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Preface
PV-WAVE:IMSL Statistics is a powerful tool for mathematical, statistical, and 
scientific computing. This PV-WAVE:IMSL Statistics Reference documents the 
routines that support this functionality. Each function and procedure is designed 
for use in research as well as in technical applications. 

Finding the Appropriate Routine 
The PV-WAVE:IMSL Statistics Reference is organized into 13 chapters. Each 
chapter groups routines with similar computational or analytical capabilities. To 
locate the appropriate function for a given problem, refer to the Contents of 
Chapter subsection in the introduction to each chapter or the alphabetical 
Summary of Routines in Appendix B.

Often the quickest way to use this PV-WAVE:IMSL Statistics Reference is to 
find an example similar to your problem and mimic the example. Documented 
routines contain at least one example.

Documentation Organization
Each PV-WAVE Advantage routine conforms to established conventions in pro-
gramming and documentation. The uniform design of these routines makes it 
easy to use more than one function or procedure in a given application. Also, 
the design consistency enables you to apply your experience with one 
PV-WAVE Advantage function to all other PV-WAVE Advantage functions.



viii  PV-WAVE:IMSL Statistics Reference

This manual contains a concise description of each function and procedure. 
Each chapter begins with an introduction containing a Contents of Chapter that 
lists the routines discussed in that chapter and the corresponding page numbers. 
At least one example, including sample input and results, is provided for most 
routines. The documentation for each routine contains of the following 
information:

•  Routine Name — procedure or function name with purpose statement

•  Usage — calling sequence

•  Input/Output Parameters — description of the parameters in the order of 
their occurrence

Input — parameter must be initialized; it is not changed by the function

Input/Output — parameter must be initialized; the routine returns output 
through the parameter; the parameter cannot be a constant or an expression

Output — no initialization is necessary; the routine returns output through 
this parameter; the parameter cannot be a constant or an expression

•  Returned Value — value returned by the function

•  Keywords — description of keywords available for a particular routine

•  Discussion — discussion of the algorithm and references to detailed 
information

•  Examples — one or more examples showing applications of this routine 
using the required parameters

•  Errors — list of errors that may occur with a particular routine for which a 
user-defined action may be desired

References

References are listed alphabetically by author in Appendix A, References.

Typographical Conventions
The following typographical conventions are used in this guide:

•  PV-WAVE Advantage code examples appear in a typewriter font. For 
example:

PLOT, temp, s02, Title = ’Air Quality’
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•  Comments for commands and program examples are shown in the follow-
ing manner:

PLOT, temp, s02, Title = ’Air Quality’

; This is a comment for the PLOT command. 

Comments are used often in this manual to explain code fragments and 
examples. 

•  PV-WAVE Advantage commands are not case sensitive. However, in this 
manual, variables are shown in lowercase italics (myvar), function and pro-
cedure names are shown in uppercase (XYOUTS), keywords are shown in 
mixed case italic (XTitle), and system variables are shown in regular mixed 
case type (!Version).

•  A $ at the end of a PV-WAVE Advantage line indicates that the current 
statement is continued on the following line.

This means, for instance, that strings are never split onto two lines without 
the addition of the string concatenation operator (+) or a comma in some 
cases. For example, the following lines would produce an error if entered 
literally in PV-WAVE Advantage:

WAVE> PLOT, x, y, Title = ’Average $ 
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines. This syntax would
; produce an error.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’ + $ 
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two command
; lines. 

The string concatenation symbol (+) is used at the end of the first line, and 
the split portions of the string are enclosed by delimiters. This is the con-
vention used in this reference whenever a string spans two lines. This is still 
only one command, even though multiple lines are used.

•  Reserved words, such as FOR, IF, and CASE, are always shown in capital 
letters.
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Technical Support
If you have problems installing, unlocking, or running your software, contact 
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and 
the U.K. can contact their local agents.

Please be prepared to provide the following information when you call for con-
sultation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing 
slip accompanying this order. (If you are evaluating the software, just men-
tion that you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, 
SPARCstation, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or 
IRIX 6.5.

• A detailed description of the problem.

Office Location Phone Number 

Corporate Headquarters
Houston, Texas 713-784-3131 

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700
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FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number 

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address 

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk
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Electronic Services

Service Address 

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE 
Mailing List: Majordomo@boulder.vni.com

To subscribe 
      include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com
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Introduction

Starting PV-WAVE:IMSL Statistics 
To start PV-WAVE:IMSL Statistics, you must first be running PV-WAVE. For 
detailed information on starting PV-WAVE, see the PV-WAVE User’s Guide or 
the installation instructions. 

At the WAVE> prompt, type:

@stat_startup

You will then see this message:

PV-WAVE:IMSL Statistics is initialized.

You are now ready to use PV-WAVE:IMSL Statistics.

Comparison of Matrices vs. Arrays
In this book, we use the following convention for 2D arrays: “row” refers to the 
first index of the array and “column” refers to the second. So for a 2D array A, 
A(i,j) is the element in row i and column j.  The PM command makes this easy 
to visualize: 

a = INTARR( 4, 8 )    &    a(2,5) = 1    &    PM, a

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
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0 0 0 0 0 0 0 0

Underflow and Overflow
In most cases, PV-WAVE:IMSL Statistics routines are written so that computa-
tions are not affected by underflow, provided the system (hardware or software) 
replaces an underflow with the value zero. Normally, system error messages 
indicating underflow can be ignored. 

PV-WAVE:IMSL Statistics routines also are written to avoid overflow. A pro-
gram that produces system error messages indicating overflow should be 
examined for programming errors such as incorrect input data, mismatch of 
parameter types, or improper dimensions. 

In many cases, the documentation for a function points out common pitfalls that 
can lead to failure of the algorithm.

Missing Values
Some of the routines in this manual allow the data to contain missing values. 
These routines recognize as a missing value the special value referred to as 
“Not a Number” or NaN. The actual value varies on different computers, but it 
can be obtained by reference to function MACHINE.

The manner in which missing values are treated depends on the individual func-
tion as described in the documentation for that function.

User Errors
PV-WAVE:IMSL Statistics functions attempt to detect user errors and handle 
them in a way that provides as much information to the user as possible. To do 
this, five levels of Informational Error severity, in addition to the basic 
PV-WAVE:IMSL Statistics error-handling facility, are recognized. Following a 
call to a PV-WAVE:IMSL Statistics mathematical or statistical function, the 
system variables !Error and !Cmast_Err contain information concerning the cur-
rent error state. The system variable !Error contains the error number of the last 
error. System variable !Cmast_Err is set to either zero, which indicates that an 
Informational Error did not occur, or to the error code of the last Informational 
Error that did occur.
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Errors and Default Actions

When your application returns from a PV-WAVE:IMSL Statistics function, the 
system variable !Cmast_Err is set either to zero, which indicates that an infor-
mational error did not occur, or to the error code for the last Informational 
Error that did occur. Internally, there are five levels of Informational Error 
severity: note, alert, warning, fatal, and terminal. Although PV-WAVE:IMSL 
Statistics does not allow users to directly manipulate how these errors are inter-
preted internally, some control over the output of error messages is allowed. All 
informational error messages are printed by default. Setting the system variable 
!Quiet to a nonzero value suppresses output of notes, alerts, and warnings.

The system variable !Error remains active during all PV-WAVE:IMSL Statis-
tics error states. But when an Informational Error occurs within a mathematical 
function, the system variable !Cmast_Err is used.

What Determines Error Severity

Although your input(s) may be mathematically correct, limitations of the com-
puter’s arithmetic and the algorithm itself can make it impossible to accurately 
compute an answer. In this case, the assessed degree of accuracy determines the 
severity of the error. In instances where the function computes several output 
quantities and some are not computable, an error condition exists. Its severity 
depends on an assessment of the overall impact of the error.

Functions for Error Handling

With respect to Informational Errors, you can interact with the 
PV-WAVE:IMSL Statistics error-handling system in two ways: 
(1) change the default printing actions and (2) determine the code of an Infor-
mational Error in order to take corrective action. To change the default printing 
action, set the system variable !Quiet to a nonzero value. Use 
CMAST_ERR_TRANS to retrieve the integer code for an informational error.
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Use of CMAST_ERR_TRANS to Determine Program Action

In the program segment below, the Cholesky factorization of a matrix is to be 
performed. If it is determined that the matrix is not nonnegative definite (and 
often this is not immediately obvious), the program takes a different branch:

x = CHNNDFAC, a, fac

; Call CHNNDFAC with a matrix that may not be nonnegative definite.

IF (CMAST_ERROR_TRANS($
’MATH_NOT_NONNNEG_DEFINITE’) eq !Cmast_Err)) THEN ... 

; Check the system variable !Cmast_Err to see if it contains the
; error code for the error NOT_NONNNEG_DEFINITE. 
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CHAPTER

1

Basic Statistics 

Contents of Chapter

Simple Summary Statistics

Univariate summary 
statistics .......................................  SIMPLESTAT Function

Mean and variance inference 
for a single normal 
population ................................... NORM1SAMP Function

Inferences for two normal 
populations ................................  NORM2SAMP Function

Tabulate, Sort, and Rank

Tallies observations into a 
one-way frequency table ...............FREQTABLE Function

Sorts data with options to tally 
cases into a multiway 
frequency table ...............................  SORTDATA Function

Ranks, normal scores, 
or exponential scores ...........................  RANKS Function
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Introduction
The functions for computations of basic statistics generally have relatively sim-
ple input parameters. The data are input in either a one- or two-dimensional 
array. As usual, when a two-dimensional array is used, the rows contain obser-
vations and the columns represent variables. Most of the functions in this 
chapter allow for missing values. Missing value codes can be set by using func-
tion MACHINE.

Several functions in this chapter perform statistical tests. These functions gener-
ally return a “p-value” for the test, often as the return value for the C function. 
The p-value is between 0 and 1 and is the probability of observing data that 
would yield a test statistic as extreme or more extreme under the assumption of 
the null hypothesis. Hence, a small p-value is evidence for the rejection of the 
null hypothesis.
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SIMPLESTAT Function 
Computes basic univariate statistics.

Usage

result = SIMPLESTAT(x)

Input Parameters

x — Data matrix. The data value for the i-th observation of the j-th variable 
should be in the matrix element (i, j).

Returned Value

result — A two-dimensional matrix containing some simple statistics for each 
variable x. If Median and Median_And_Scale are not used as keywords, then 
element (i, j) of the returned matrix contains the i-th statistic of the j-th variable.

i Statistic Returned in Element (i, *)

0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined)
If the coefficient of variation is not defined, zero is 
returned.

9 number of observations (the counts)

10 lower confidence limit for the mean (assuming 
normality)
The default is a 95-percent confidence interval.
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Input Keywords

Double — If present and nonzero, double precision is used.

Conf_Means — Scalar specifying the confidence level for a two-sided interval 
estimate of the means (assuming normality) in percent. The Conf_Means key-
word must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c, set 
Conf_Means = 100.0 – 2.0(100.0 – c) (at least 50 percent). 

Default: 95-percent confidence interval is computed

Conf_Variances — Confidence level for a two-sided interval estimate of the 
variances (assuming normality) in percent. The confidence intervals are sym-
metric in probability (rather than in length). For a one-sided confidence interval 
with confidence level c, set Conf_Means = 100.0 – 2.0(100.0 – c) (at least 50 
percent). 

Default: 95-percent confidence interval is computed.

Median_Only — If present and nonzero, medians are computed and stored in 
elements (14, *) of the returned matrix of simple statistics. The Median_Only 
and Median_And_Scale keywords cannot be used together. 

Median_And_Scale — If present and nonzero, specified, the medians, the 
medians of the absolute deviations from the medians, and a simple robust esti-
mate of scale are computed and stored in elements (14, *), (15, *), and (16, *) 
of the returned matrix of simple statistics. The Median_Only and 
Median_And_Scale keywords cannot be used together. 

Elementwise — If present and nonzero, all nonmissing data for any variable is 
used in computing the statistics for that variable. 

Default action: if an observation (row of x) contains a missing value, 
the observation is excluded from computations for all variables. In 

11 upper confidence limit for the mean (assuming 
normality)

12 lower confidence limit for the variance (assuming 
normality)
The default is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming 
normality)

i Statistic Returned in Element (i, *)
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either case, if weights and/or frequencies are specified and the value of 
the weight and/or frequency is missing, the observation is excluded 
from computations for all variables.

Frequencies — One-dimensional array containing the frequency for each 
observation.

Default: each observation has a frequency of 1

Weights — One-dimensional array containing the weight for each observation.

Default: each observation has a weight of 1

Discussion

Function SIMPLESTAT computes the sample mean, variance, minimum, maxi-
mum, and other basic statistics for the data in x. It also computes confidence 
intervals for the mean and variance (under the hypothesis that the sample is 
from a normal population).

Frequencies, fi’s, are interpreted as multiple occurrences of the other values in 
the observations. In other words, a row of x with a frequency variable having a 
value of 2 has the same effect as two rows with frequencies of 1. The total of 
the frequencies is used in computing all the statistics based on moments (mean, 
variance, skewness, and kurtosis). Weights, wi’s, are not viewed as replication 
factors. The sum of the weights is used only in computing the mean (the 
weighted mean is used in computing the central moments). Both weights and 
frequencies can be zero, but neither can be negative. In general, a zero fre-
quency means that the row is to be eliminated from the analysis; no further 
processing or error checking is done on the row. A weight of zero results in the 
row being counted, and updates are made of the statistics.

The definitions of some of the statistics are given below in terms of a single 
variable x of which the i-th datum is xi.
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Mean

Variance

Skewness

Excess or Kurtosis

Minimum

xmin = min(xi) 

Maximum

xmax = max(xi)

Range

xmax – xmin

Coefficient of Variation

xw

fiwixi∑
fiwi∑

--------------------=

sw
2

fiwi xi xw–( )2∑
n 1–

--------------------------------------=

fiwi xi xw–( )3 n⁄∑
fiwi xi xw–( )2

n⁄∑
3 2⁄--------------------------------------------------------------

fiwi xi xw–( )4 n⁄∑
fiwi xi xw–( )2

n⁄∑
2

---------------------------------------------------------- 3–

sw

xw

----- for x 0≠
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Median

Median Absolute Deviation

Simple Robust Estimate of Scale

where  

is the inverse of the standard normal distribution function evaluated at 3/4. This 
standardizes MAD in order to make the scale estimate consistent at the normal 
distribution for estimating the standard deviation (Huber 1981, pp. 107–108).

Example

This example uses data from Draper and Smith (1981). There are five variables 
and 13 observations.

x = STATDATA(5)

stats = SIMPLESTAT(x)

; Call SIMPLESTAT.

labels = ["means", "variances", "std. dev", $

"skewness", "kurtosis", "minima", $

"maxima", "ranges", "C.V.", "counts", $

"lower mean", "upper mean", $

"lower var", "upper var"]

; Define the character strings that will be used as labels for the
; rows of the output.

FOR i = 0, 13 DO PM, labels(i), stats(i, *), $

Format = ’(a10, 5f9.3)’

; Output the results.

means 7.462 48.154 11.769 30.000 95.423

variances 34.603 242.141 41.026 280.167 226.314

median xi{ } middle xi after sorting if n is odd

average of middle two xi’s if n is even



=

MAD median xi median xj{ }–{ }=

MAD Φ 1– 3 4⁄( )⁄

Φ 1– 3 4⁄( ) 0.6745≈
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std. dev 5.882 15.561  6.405 16.738 15.044

skewness 0.688 -0.047  0.611  0.330 -0.195

kurtosis 0.075 -1.323 -1.079 -1.014 -1.342

minima 1.000 26.000  4.000 6.000 72.500

maxima 21.000 71.000 23.000 60.000 115.900

ranges 20.000 45.000 19.000 54.000 43.400

C.V. 0.788  0.323  0.544  0.558 0.158

counts 13.000 13.000 13.000 13.000 13.000

lower mean 3.907 38.750  7.899 19.885 86.332

upper mean 11.016 57.557 15.640 40.115 104.514

lower var 17.793 124.512 21.096 144.065 116.373

upper var 94.289 659.817 111.792 763.434 616.688
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NORM1SAMP Function 
Computes statistics for mean and variance inferences using a sample from a 
normal population.

Usage

result = NORM1SAMP(x)

Input Parameters

x — One-dimensional array containing the observed values.

Returned Value

result — The mean of the sample.

Input Keywords

Double — If present and nonzero, double precision is used

Conf_Mean — Confidence level (in percent) for two-sided interval estimate of 
the mean. Keyword Conf_Mean must be between 0.0 and 100.0 and is often 
90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level c 
(at least 50 percent), set Conf_Mean = 100.0 – 2.0 x (100.0 – c). 

Default: 95-percent confidence interval is computed

T_Null_Hyp — Null hypothesis value for t test for the mean.

Default: T_Null_Hyp = 0.0

Chi_Sq_Null_Hyp — Null hypothesis value for the chi-squared test for the 
variance.

Default: Chi_Sq_Null_Hyp = 1.0

Conf_Var — Confidence level (in percent) for two-sided interval estimate of 
the variances. Keyword Conf_Var must be between 0.0 and 100.0 and is often 
90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level c 
(at least 50 percent), set Conf_Var = 100.0 – 2.0 x (100.0 – c). 

Default: 95-percent confidence interval is computed.
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Output Keywords

T_Test — Named variable into which the three-element array containing statis-
tics associated with the t test is stored. The first element contains the degrees of 
freedom associated with the t test for the mean, the second element contains the 
test statistic, and the third element contains the probability of a larger 
t in absolute value. The t test is a test of the hypothesis µ = µ0, where µ0 is the 
null hypothesis value as described in T_Null_Hyp.

Ci_Mean — Named variable into which the two-element array containing the 
lower confidence limit for the mean, and the upper confidence limit for the 
mean is stored.

Ci_Var — Named variable into which the two-element array containing lower 
and upper confidence limits for the variance is stored.

Chi_Sq_Test — Named variable into which the three-element array containing 
statistics associated with the chi-squared test is stored. The first element con-
tains the degrees of freedom associated with the chi-squared test for variances, 
the second element contains the test statistic, and the third element contains the 
probability of a larger chi-squared value. The chi-squared test is a test of the 
hypothesis σ2 = σ2

0, where σ2
0 is the null hypothesis value as described in 

Chi_Sq_Null_Hyp.

Stdev — Named variable into which the standard deviation of the sample is 
stored.

Discussion

Statistics for mean and variance inferences using a sample from a normal popu-
lation are computed, including confidence intervals and tests for both mean and 
variance. The definitions of mean and variance are given below. The summation 
in each case is over the set of valid observations, based on the presence of miss-
ing values in the data.

Mean, return value

x
xi∑

n
-----------=
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Standard deviation

The t statistic for the two-sided test concerning the population mean is given by

where s and  

are given above. This quantity has a T distribution with n – 1 degrees of 
freedom.

The chi-squared statistic for the two-sided test concerning the population vari-
ance is given by

where s is given above. This quantity has a χ2 distribution with n – 1 degrees of 
freedom.

Example 1

This example uses data from Devore (1982, p. 335), which is based on data 
published in the Journal of Materials. There are 15 observations; the mean is 
the only output. 

x = [26.7, 25.8, 24.0, 24.9, 26.4, $

25.9, 24.4, 21.7, 24.1, 25.9, $

27.3, 26.9, 27.3, 24.8, 23.6]

PRINT, "Sample Mean = ", NORM1SAMP(x)

Sample Mean = 25.3133

Example 2

This example uses the same data as the initial example. The hypothesis H0: µ = 
20.0 is tested. The extremely large t value and the correspondingly small p-

s
xi x–( )2

∑
n 1–

---------------------------=

t
x µ0–

s n⁄
--------------=

x

χ2 n 1–( )s2

σ0
2

---------------------=
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value provide strong evidence to reject the null hypothesis. First, a procedure to 
print the results is defined.

PRO print_results, mean, stdev, $

ci_mean, t_test

PM, mean, Title = "Sample Mean:"

PM, stdev, Title = $
"Sample Standard Deviation:"

PM, "(", ci_mean(0), ci_mean(1), ")", $
Title = "95% CI for the mean:"

PM, ’ ’

PM, " df = ", $
t_test(0), Title = ’t-test statistics:’

PM, "   t   = ", t_test(1)

PM, "   p-value = ", t_test(2)

END

x = [26.7, 25.8, 24.0, 24.9, 26.4, 25.9, 24.4,$
21.7, 24.1, 25.9, 27.3, 26.9, 27.3, 24.8,$
23.6]

mean = NORM1SAMP(x, Stdev = stdev, $

Ci_Mean = ci_mean, $

T_Null_Hyp = 40.0, $

T_Test = t_test)

print_results, mean, stdev, ci_mean, t_test

Sample Mean:

  25.3133

Sample Standard Deviation:

 1.57882

95% CI for the mean:

(  24.4390  26.1877) 

t-test statistics:

 df  =   14.0000

 t   =      -36.0277

 p-value =       2.00000
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NORM2SAMP Function 
Computes statistics for mean and variance inferences using samples from two 
independently normal populations.

Usage

result = NORM2SAMP(x1, x2)

Input Parameters

x1 — One-dimensional array containing the first sample.

x2 — One-dimensional array containing the second sample.

Returned Value

result — Difference in means of the mean of the second sample from the first 
sample.

Input Keywords

Double — If present and nonzero, double precision is used.

Conf_Mean — Confidence level for two-sided interval estimate of the mean of
x1 minus the mean of x2, in percent. Keyword Conf_Mean must be between 0.0 
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval 
with confidence level c (at least 50 percent), set

Conf_Mean = 100.0 – 2.0 x (100.0 – c).

Default: Conf_Mean = 95.0

T_Test_Null_Hyp — Null hypothesis value for the t test.

Default: T_Test_Null_Hyp = 0.0

Conf_Var — Confidence level for inference on variances. Under the assumption 
of equal variances, the pooled variance is used to obtain a two-sided Conf_Var 
percent confidence interval for the common variance if Ci_Comm_Var is speci-
fied. Without making the assumption of equal variances, the ratio of the 
variances is of interest. A two-sided Conf_Var percent confidence interval for 
the ratio of the variance of the first sample to that of the second sample is com-
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puted and is returned if Ci_Ratio_Var is specified. The confidence intervals are 
symmetric in probability.

Default: Conf_Var = 95.0

Chi_Sq_Null_Hyp — Null hypothesis value for the chi-squared test.

Default: Chi_Sq_Null_Hyp = 1.0

Output Keywords

Mean_X1 — Means of the first sample.

Mean_X2 — Means of the second sample.

Ci_Diff_Eq_Var — Named variable into which the two-element array contain-
ing the lower confidence limit and the upper limit for the mean of the first 
population minus the mean of the second, assuming equal variances is stored.

Ci_Diff_Ne_Var — Named variable into which the two-element array contain-
ing the lower confidence limit and the upper limit for the mean of the first 
population minus the mean of the second, assuming unequal variances, is 
stored.

T_Test_Eq_Var — Named variable into which the three-element array contain-
ing statistics associated with a t test for µ1 – µ2 = d, where d is the null 
hypothesis value, is stored. (See the description of T_Test_Null_Hyp.) The first 
element contains the degrees of freedom, second element contains the t value, 
and the third element contains the probability of a larger t in absolute value, 
assuming the null hypothesis is true. This test assumes equal variances.

T_Test_Ne_Var — Named variable into which the three-element array contain-
ing statistics associated with a t test for µ1 – µ2 = d, where d is the null 
hypothesis value, is stored. (See the description of T_Test_Null_Hyp.) The first 
element contains the degrees of freedom for Satterthwaite’s approximation, the 
second element contains the t value, and the third element contains the probabil-
ity of a larger t in absolute value, assuming the null hypothesis is true. This test 
does not assume equal variances. 

Pooled_Var — Named variable into which the pooled variance for the two sam-
ples is stored.

Ci_Comm_Var — Named variable into which the two-element array containing 
the lower confidence limit and the upper confidence limit for the common (or 
pooled) variance is stored.
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Chi_Sq_Test — Named variable into which the three-element array containing 
statistics associated with the chi-squared test for σ2 = σ2

0, where σ2 is the com-
mon (or pooled) variance and σ2

0 is the null hypothesis value, is stored. (See 
description of Chi_Sq_Null_Hyp.) The first element contains the degrees of 
freedom, the second element contains the chi-squared value, and the third ele-
ment contains the probability of a larger chi-squared value, p-value. This test 
assumes equal variances.

Stdev_X1 — Named variable into which the standard deviation of the first sam-
ple is stored.

Stdev_X2 — Named variable into which the standard deviation of the second 
sample is stored.

Ci_Ratio_Var — Named variable into which the two-element array containing 
the approximate lower confidence limit and the approximate upper confidence 
limit for the ratio of the variance of the first population to the second is stored.

F_Test — Named variable into which the four-element array containing statis-
tics associated with the F test for equality of variances is stored. The first 
element contains the degrees of freedom for the numerator, the second element 
contains the degrees of freedom for the denominator, the third element contains 
the F test value, and the fourth element contains the probability of a larger F 
value, p-value, assuming the null hypothesis (H0: σ2

1 = σ2
2) is true.

Discussion

Function NORM2SAMP computes statistics for making inferences about the 
means and variances of two normal populations, using independent samples in 
x1 and x2. For inferences concerning parameters of a single normal population, 
see function NORM1SAMP on page 25.

Let µ1 and σ2
1 be the mean and variance of the first population, and let µ2 and 

σ2
2 be the corresponding quantities of the second population. The function con-

tains test statistics and confidence intervals for difference in means, equality of 
variances, and the pooled variance.

The means and variances for the two samples are as follows:

x1 x1 i n1⁄∑ 
  ,= x2 x2 i∑ 

  n2⁄=
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and

Inferences about the Means

The test that the difference in means equals a certain value, for example, µ0, 
depends on whether or not the variances of the two populations can be consid-
ered equal. If the variances are equal and T_Test_Null_Hyp equals zero, the test 
is the two-sample t test, which is equivalent to an analysis-of-variance test. The 
pooled variance for the difference-in-means test is as follows:

The t statistic is as follows:

Also, the confidence interval for the difference in means can be obtained by 
specifying Ci_Diff_Eq_Var.

If the population variances are not equal, the ordinary t statistic does not have a 
t distribution and several approximate tests for the equality of means have been 
proposed. (See, for example, Anderson and Bancroft 1952, and 
Kendall and Stuart 1979.) One of the earliest tests devised for this situation is 
the Fisher-Behrens test, based on Fisher’s concept of fiducial probability. A pro-
cedure used if T_Test_Ne_Var and/or Ci_Diff_Ne_Var are specified is the 
Satterthwaite’s procedure, as suggested by H.F. Smith and modified by F.E. Sat-
terthwaite (Anderson and Bancroft 1952, p. 83).

The test statistic is 

, 

where . 

s1
2

x1 i x1–( )2

n1 1–( )
----------------------- s2

2
x2i x2–( )2

n2 1–( )
-----------------------∑=,∑=

s
2 n1 1–( )s1 n2 1–( )s2+

n1 n2 2–+
------------------------------------------------------=

t
x1 x2– d–

s 1 n1⁄( ) 1 n2⁄( )+
-----------------------------------------------=
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sd s1
2 n1⁄( ) s2
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Under the null hypothesis of µ1 – µ2 = d, this quantity has an approximate t dis-
tribution with degrees of freedom given by the following equation:

Inferences about the Variances

The F statistic for testing the equality of variances is given by 

F = s2
max / s2

min, 

where s2
max is the maximum of s2

1 and s2
2. If the variances are equal, this quan-

tity has an F distribution with n1 – 1 and n2 – 1 degrees of freedom, where n1 is 
the sample size corresponding to s2

max.

Generally, it is not recommended that the results of the F test be used to decide 
whether to use the regular t test or the modified t′ on a single set of data. The 
modified t′ (Satterthwaite’s procedure) is the more conservative approach to use 
if there is doubt about the equality of the variances.

Example 1

This example, taken from Conover and Iman (1983, p. 294), involves scores on 
arithmetic tests of two grade-school classes. The question is whether a group 
taught by an experimental method has a higher mean score. Only the difference 
in means is output. The data are shown below.

Scores for
Standard Group

Scores for 
Experimental Group

72 111

75 118

77 128

80 138

104 140

110 150

125 163

 164

 169

d f
sd

4

s1
2 n1⁄( )2

n1 1–
--------------------

s2
2 n2⁄( )2

n2 1–
--------------------+

------------------------------------------------=
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x1 = [72, 75, 77, 80, 104, 110, 125]

x2 = [111, 118, 128, 138, 140, 150, 163, $
164, 169]

PRINT, "difference of means = ", NORM2SAMP(x1, x2)

difference of means =      -50.4762

Example 2

The same data is used for this example as for the initial example. Here, the 
results of the t test are output. The variances of the two populations are 
assumed to be equal. It is seen from the output that there is strong reason to 
believe that the two means are different (t value of –4.804). Since the lower 
97.5-percent confidence limit does not include zero, the null hypothesis is that 
µ1 ≤ µ2 would be rejected at the 0.05 significance level. (The closeness of the 
values of the sample variances provides some qualitative substantiation of the 
assumption of equal variances.) First, define a procedure to print the results.

PRO print_results, diff, sp, ci, t

 PM, diff, Title = "Difference of Means: "

 PM, sp, Title = "Pooled Variance: "

 PM, "CI for Difference of Means is (", ci(0), ",", ci(1), ")"

 PM, ’ ’

 PM, "t-test for Equal Variances:"

 PM, t(0), Title = "Degrees of Freedom:"

 PM, t(1), Title = "t statistic: "

 PM, t(2), Title = "P-Value:"

END

x1 = [72, 75, 77, 80, 104, 110, 125]

x2 = [111, 118, 128, 138, 140, 150, 163, $

164, 169]

diff = NORM2SAMP(x1, x2, Pooled_Var = sp, $

Ci_Diff_Eq_Var = ci, T_Test_Eq_Var = t)

print_results, diff, sp, ci, t

Difference of Means: 

 -50.4762

Pooled Variance: 

   434.633

CI for Difference of Means is 

(     -73.0100,     -27.9424)
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t-test for Equal Variances:

Degrees of Freedom:

  14.0000

t statistic: 

 -4.80436

P-Value:

 0.000280258
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FREQTABLE Function 
Tallies observations into a one-way or two-way frequency table.

Usage

result = FREQTABLE(x, nxbins [, y, nybins])

Input Parameters

x — One-dimensional array containing the observations for the first variable.

nxbins — Number of intervals (bins) for x.

y — (Optional) One-dimensional array containing the observations for the sec-
ond variable.

nybins — (Optional) Number of intervals (bins) for y. 

Returned Value

result — One-dimensional or two-dimensional array containing the counts.

Input Keywords

Double — If present and nonzero, double precision is used.

IF Two Positional Arguments Are Used:

Lower_Bound — Used with Upper_Bound to specify two semi-infinite inter-
vals that are used as the initial and last interval. The initial interval is closed on 
the right and includes Lower_Bound as its right endpoint. The last interval is 
open on the left and includes all values greater than Upper_Bound. The remain-
ing nxbins − 2 intervals are of length 

(Upper_Bound – Lower_Bound) / (nxbins – 2)

and are open on the left and closed on the right. The keyword Upper_Bound 
also must be specified with this keyword. Parameter nxbins must be greater than 
or equal to 3 for this option.

Upper_Bound — Used along with Lower_Bound to specify two semi-infinite 
intervals that are used as the initial and last interval. The initial interval is 
closed on the right and includes Lower_Bound as its right endpoint. The last 
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interval is open on the left and includes all values greater than Upper_Bound. 
The remaining nxbins − 2 intervals are of length (Upper_Bound – 
Lower_Bound) /( nxbins – 2)and are open on the left and closed on the right. 
The keyword Lower_Bound must also be specified with this keyword. Parame-
ter nxbins must be greater than or equal to 3 for this option. 

Cutpoints — Specifies a one-dimensional array of length nxbins containing the 
cutpoints to use. This option allows unequal intervals. The initial interval is 
closed on the right and contains the initial cutpoint as its right endpoint. The 
last interval is open on the left and includes all values greater than the last cut-
point. The remaining nxbins − 2 intervals are open on the left and closed on the 
right. Parameter nxbins must be greater than 3 for this option. If Cutpoints is 
used, then no other keywords should be specified.

Class_Marks — Specifies a one-dimensional array containing equally spaced 
class marks in ascending order. The class marks are the midpoints of each of 
the nxbins, and each interval is taken to have length (Class_Marks(1) – 
Class_Marks(0)). Parameter nxbins must be greater than or equal to 2 for this 
option. If Class_Marks is used, then no other keywords should be specified.

If Four Positional Arguments Are Used:

Lower_Bound — Used with Upper_Bound to specify intervals of equal lengths.  
See the Discussion section for details. 

Upper_Bound — Used with Lower_Bound to specify intervals of equal lengths.  
See the Discussion section for details. 

Cutpoints — Specifies a one-dimensional array of cutpoints (boundaries). The 
keyword Cutpoints must be a one-dimensional array of length 
(nxbins–1) + (nybins–1) containing the cutpoints for x in the first (nxbins–1)  
elements followed by the cutpoints for y in the final (nybins–1) elements. 

Class_Marks — Specifies a one-dimensional array containing equally spaced 
class marks in ascending order. The class marks are the midpoints of each inter-
val. The keyword Class_marks must be a one-dimensional array of length 
(nxbins + nybins) containing the class marks for x in the first nxbins elements 
followed by the class marks for y in the final nybins elements.  



38  Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

Discussion

If Two Positional Arguments Are Used:

The default action of FREQTABLE is to group data into nxbins categories of 
size (max (x) – min (x)) / nxbins. The initial interval is closed on the left and 
open on the right. The remaining intervals are open on the left and closed on 
the right. Using keywords, the types of intervals used may be changed.

If Upper_Bound and Lower_Bound are specified, two semi-infinite intervals are 
used as the initial and last interval. The initial interval is closed on the right and 
includes Lower_Bound as its right endpoint. The last interval is open on the left 
and includes all values greater than Upper_Bound. The remaining nxbins − 2 
intervals are of length (Upper_Bound – Lower_Bound) / (nxbins – 2) and are 
open on the left and closed on the right. Parameter nxbins must be greater than 
or equal to 3 for this option.

If keyword Class_Marks is used, equally spaced class marks in ascending order 
must be provided in an array of length nxbins. The class marks are the mid-
points of each of the nxbins, and each interval is taken to have the following 
length:

(Class_Marks(1) – Class_Marks(0))

Parameter nxbins must be greater than or equal to 2 for this option. 

If keyword Cutpoints is used, cutpoints (bounders) must be provided in an array 
of length nxbins. This option allows unequal intervals. The initial interval is 
closed on the right and contains the initial cutpoint as its right endpoint. The 
last interval is open on the left and includes all values greater than the last cut-
point. The remaining nxbins − 2 intervals are open on the left and closed on the 
right. Parameter nxbins must be greater than 3 for this option.

If Four Positional Arguments Are Used:

By default, nxbins intervals of equal length are used. Let xmin and xmax be the 
minimum and maximum values in x, respectively, with similar meanings for 
ymin and ymax. Then, table(0, 0) is the tally of observations with the x value 
less than or equal to xmin + (xmax–xmin)/nxbins, and the y value less than or 
equal to ymin + (ymax–ymin)/ny. 

If Upper_Bound and Lower_Bound are specified, intervals of equal lengths are 
used just as in the default case, except the upper and lower bounds are taken as 
the user supplied keywords xmin = Lower_bound(0), xmax = Upper_bound(0), 
ymin = Lower_bound(1), and ymax = Upper_bound(1), instead of the actual 
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minima and maxima in the data. Therefore, the first and last intervals for both 
variables are semi-infinite in length. 

If Cutpoints is specified, cutpoints (boundaries) must be provided. The key-
word Cutpoints must be a one-dimensional array of length (nxbins–1) + 
(nybins–1) containing the cutpoints for x in the first (nxbins–1) elements fol-
lowed by the cutpoints for y in the final (nybins–1) elements. 

If Class_marks is specified, equally spaced class marks in ascending order must 
be provided. The class marks are the midpoints of each interval. The keyword 
Class_marks must be a one-dimensional array of length (nxbins + nybins) con-
taining the class marks for x in the first nxbins elements followed by the class 
marks for y in the final nybins elements.

Example 1: One-way Frequency Table

The data for this example is from Hinkley (1977) and Velleman and Hoaglin 
(1981). Data includes measurements (in inches) of precipitation in Minneapolis/
St. Paul during the month of March for 30 consecutive years.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,$

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,$

0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,$

1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,$

0.90, 2.05]

; Define the data set.

table = FREQTABLE(x, 10)

; Call FREQTABLE with nxbins = 10.

PRINT, ’   Bin Number  Count’ &$

PRINT, ’   ----------  -----’  &$

FOR i = 0, 9 DO PRINT, i + 1, table(i)

Bin Number  Count

----------  -----

 1      4.00000

 2      8.00000

 3      5.00000

 4      5.00000

 5      3.00000

 6      1.00000

 7      3.00000

 8      0.00000

 9      0.00000
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 10 1.00000

Example 2: Two-way Frequency Table

The data for x in this example is the same as in the example above.  The data 
for y were created by adding small integers to x.

nxbins  =  5

nybins  =  6

; Define the data set.

x  =  [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, $

       2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, $

       0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, $

       1.89, 0.90, 2.05]

y  =  [1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, $

       3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, $

       1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, $

       2.89, 2.90, 5.05]

; Default usage of FREQTABLE

table  =  FREQTABLE(x, nxbins, y, nybins)

PM, table, Format = "(6(F8.5,  2X))", $

     Title = ’                          counts’

                          counts

 4.00000   2.00000   4.00000   2.00000   0.00000   0.00000

 0.00000   4.00000   3.00000   2.00000   1.00000   0.00000

 0.00000   0.00000   1.00000   2.00000   0.00000   1.00000

 0.00000   0.00000   0.00000   0.00000   1.00000   2.00000

 0.00000   0.00000   0.00000   0.00000   0.00000   1.00000

lb  =  [1, 2]

up  =  [4, 6]

; Using user-defined bounds

table  =  FREQTABLE(x, nxbins, y, nybins, Upper_Bound = up, $

                   Lower_Bound = lb)

PM, table, Format = "(6(F8.5,  2X))", $

      Title = ’                          counts’
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                          counts

 3.00000   2.00000   4.00000   0.00000   0.00000   0.00000

 0.00000   5.00000   5.00000   2.00000   0.00000   0.00000

 0.00000   0.00000   1.00000   3.00000   2.00000   0.00000

 0.00000   0.00000   0.00000   0.00000   0.00000   2.00000

 0.00000   0.00000   0.00000   0.00000   1.00000   0.00000

cm  =  [0.5, 1.5, 2.5, 3.5, 4.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5]

; Using class-marks

table  =  FREQTABLE(x, nxbins, y, nybins, Class_Marks = cm)

PM, table, Format = "(6(F8.5,  2X))", $

       Title = ’                          counts’

                          counts

 3.00000   2.00000   4.00000   0.00000   0.00000   0.00000

 0.00000   5.00000   5.00000   2.00000   0.00000   0.00000

 0.00000   0.00000   1.00000   3.00000   2.00000   0.00000

 0.00000   0.00000   0.00000   0.00000   0.00000   2.00000

 0.00000   0.00000   0.00000   0.00000   1.00000   0.00000

cp  =  [1, 2, 3, 4, 2, 3, 4, 5, 6]

; Using cutpoints

table  =  FREQTABLE(x, nxbins, y, nybins, Cutpoints = cp)

PM, table, Format = "(6(F8.5,  2X))", $

        Title = ’                          counts’

                          counts

 3.00000   2.00000   4.00000   0.00000   0.00000   0.00000

 0.00000   5.00000   5.00000   2.00000   0.00000   0.00000

 0.00000   0.00000   1.00000   3.00000   2.00000   0.00000

 0.00000   0.00000   0.00000   0.00000   0.00000   2.00000

 0.00000   0.00000   0.00000   0.00000   1.00000   0.00000



42  Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

SORTDATA Function 
Sorts observations by specified keys, with option to tally cases into a multiway 
frequency table.

Usage

result = SORTDATA(x, n_keys)

Input Parameters

x — One- or two-dimensional array containing the observations to be sorted.

n_keys — Number of columns of x on which to sort. The first n_keys columns 
of x are used as the sorting keys. (Exception: See keyword Indices_Keys).

Returned Value

result — The sorted array.

Input Keywords

Double — If present and nonzero, double precision is used.

Indices_Keys — One-dimensional array of length n_keys giving the column 
numbers of x which are to be used in the sort.

Default: Indices_Keys(*) = 0, 1, ..., n_keys – 1

Frequencies — One-dimensional array containing the frequency for each obser-
vation in x.

Default: Frequencies (*) = 1

Ascending — If present and nonzero, the sort is in ascending order. (Default) 
Keywords Ascending and Descending cannot be used together. 

Descending — If present and nonzero, the sort is in descending order. Key-
words Ascending and Descending cannot be used together. 
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Output Keywords

Permutation — Named variable into which a one-dimensional array containing 
the rearrangement (permutation) of the observations (rows) is stored.

Table_N — Named variable into which a one-dimensional array of length 
n_keys, containing in its i-th element (i = 0, 1, ..., (n_keys – 1)) the number of 
levels or categories of the i-th classification variable (column), is stored. Key-
words Table_N, Table_Values, and Table_Bal must be used together.

Table_Values — Named variable into which an array of length Table_N(0) + 
Table_N(1) + ... + Table_N(n_keys – 1), containing the values of the classifica-
tion variables, is stored. The first Table_N(0) elements of Table_Values contain 
the values for the first classification variable. The next Table_N(1) contain the 
values for the second variable. The last Table_N(n_keys – 1) positions contain 
the values for the last classification variable. Keywords Table_N, Table_Values, 
and Table_Bal must be used together.

Table_Bal — Named variable into which an array of length Table_N(0) + 
Table_N(1) + ... + Table_N(n_keys – 1), containing the frequencies in the cells 
of the table to be fit, is stored. Empty cells are included in Table_Bal, and each 
element of Table_Bal is nonnegative. The cells of Table_Bal are sequenced so 
that the first variable cycles through its Table_N(0) categories one time, the sec-
ond variable cycles through its Table_N(1) categories Table_N(0) times, the 
third variable cycles through its Table_N(2) categories Table_N(0) x Table_N(1) 
times, etc., up to the n_keys-th variable, which cycles through its 
Table_N(n_keys – 1) categories

Table_N(0) + Table_N(1) + Table_N(n_keys – 2)

times. Keywords Table_N, Table_Values, and Table_Bal must be used together.

N_List_Cells — Named variable into which the number of nonempty cells is 
stored. Keywords N_List_Cells, List_Cells, and Table_Unbal must be used 
together.

List_Cells — Named variable into which the two-dimensional array of length 
N_List_Cells x n_keys containing, for each row, a list of the levels of n_keys 
corresponding classification variables that describe a cell, is stored. Keywords 
N_List_Cells, List_Cells, and Table_Unbal must be used together.

Table_Unbal — Named variable into which the one-dimensional array of length 
N_List_Cells containing the frequency for each cell is stored. Keywords 
N_List_Cells, List_Cells, and Table_Unbal must be used together.
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N_Cells — Named variable into which the a one-dimensional array containing 
the number of observations per group is stored. A group contains observations 
(rows) in x that are equal with respect to the method of comparison. The first 
N_Cells (0) rows of the sorted x are in group number 1. The next N_Cells (1) 
rows of the sorted x are in group number 2, etc. The last 
N_Cells(N_ELEMENTS(N_Cells) – 1) rows of the sorted x are in group num-
ber N_ELEMENTS(N_Cells).

Discussion

Function SORTDATA can perform both a key sort and/or tabulation of frequen-
cies into a multiway frequency table.

Sorting

Function SORTDATA sorts the rows of real matrix x using particular columns 
in x as the keys. The sort is algebraic with the first key as the most significant, 
the second key as the next most significant, etc. When x is sorted in ascending 
order, the resulting sorted array is such that the following is true:

•  For i = 0, 1, ..., N_ELEMENTS (x(*, 0)) – 2,
x(1, Indices_Keys(0)) ≤ x(i + 1, Indices_Keys(0))

•  For k = 1, ..., n_keys – 1, if
x(1, Indices_Keys(j)) = x(i + 1, Indices_Keys(j)) for
j = 0, 1, ..., k – 1, then
x(1, Indices_Keys(j)) = x(i + 1, Indices_Keys(k))

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the 
specified columns are considered as an additional group. These rows are moved 
to the end of the sorted x.

The sorting algorithm is based on a quicksort method given by Singleton (1969) 
with modifications by Griffin and Redish (1970) and Petro (1970). 

Frequency Tabulation

Function SORTDATA determines the distinct values in multivariate data and 
computes frequencies for the data. This function accepts the data in the matrix x 
but performs computations only for the variables (columns) in the first n_keys 
columns of x (Exception: see optional keyword Indices_Keys). In general, the 
variables for which frequencies should be computed are discrete; they should 
take on a relatively small number of different values. Variables that are continu-
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ous can be grouped first. The function FREQTABLE can be used to group 
variables and determine the frequencies of groups.

When Table_N, Table_Values, and Table_Bal are specified, SORTDATA fills the 
vector Table_Values with the unique values of the variables and tallies the num-
ber of unique values of each variable in the vector Table_Bal. Each combination 
of one value from each variable forms a cell in a multiway table. The frequen-
cies of these cells are entered in Table_Bal so that the first variable cycles 
through its values exactly once and the last variable cycles through its values 
most rapidly. Some cells cannot correspond to any observations in the data; in 
other words, “missing cells” are included in the Table_Bal table and have a 
value of zero.

When N_List_Cells, List_Cells, and Table_Unbal are specified, the frequency of 
each cell is entered in Table_Unbal so that the first variable cycles through its 
values exactly once and the last variable cycles through its values most rapidly. 
All cells have a frequency of at least 1, i.e., there is no “missing cell.” The 
array List_Cells can be considered “parallel” to Table_Unbal because row i of 
List_Cells is the set of n_keys values that describes the cell for which row i of 
Table_Unbal contains the corresponding frequency.

Example 1

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0 
and 1 as the keys. There are two missing values (NaNs) in the keys. The obser-
vations containing these values are moved to the end of the sorted array.

f = MACHINE(/Float)

c0 =[1.0, 2.0, 1.0, 1.0, 2.0, 1.0, f.NaN, 1.0,$

2.0, 1.0]

c1 =[1.0, 1.0, 1.0, 1.0, f.NaN, 2.0, 2.0, 1.0,$

2.0, 1.0]

c2 =[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,$

9.0, 9.0]

x = [ [c0], [c1], [c2] ]

PM, x, Title = ’Unsorted Matrix’

Unsorted Matrix

 1.00000      1.00000      1.00000

 2.00000      1.00000      2.00000

1.00000      1.00000      3.00000

 1.00000      1.00000      4.00000

 2.00000          NaN      5.00000
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 1.00000      2.00000      6.00000

 NaN      2.00000      7.00000

 1.00000      1.00000      8.00000

 2.00000      2.00000      9.00000

 1.00000      1.00000      9.00000

PM, SORTDATA(x, 2), Title = ’Sorted Matrix’

Sorted Matrix:

 1.00000      1.00000      1.00000

 1.00000      1.00000      9.00000

 1.00000      1.00000      3.00000

 1.00000      1.00000      4.00000

 1.00000      1.00000      8.00000

 1.00000      2.00000      6.00000

 2.00000      1.00000      2.00000

 2.00000      2.00000      9.00000

 NaN      2.00000      7.00000

 2.00000          NaN      5.00000

Example 2

This example uses the same data as the previous example. The permutation of 
the rows is output using the keyword Permutation.

f = MACHINE(/Float)

c0 =[1.0, 2.0, 1.0, 1.0, 2.0, 1.0, f.NaN, 1.0,$

2.0, 1.0]

c1 =[1.0, 1.0, 1.0, 1.0, f.NaN, 2.0, 2.0, 1.0,$

2.0, 1.0]

c2 =[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,$

9.0, 9.0]

; Fill up a matrix, including some missing values.

x = [ [c0], [c1], [c2] ]

PM, x, Title = ’Unsorted Matrix’

; Output the unsorted matrix.

Unsorted Matrix

 1.00000      1.00000      1.0000

 2.00000      1.00000      2.00000

 1.00000      1.00000      3.00000

 1.00000      1.00000      4.00000

 2.00000          NaN      5.00000

 1.00000      2.00000      6.00000
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 NaN      2.00000      7.00000

 1.00000      1.00000      8.00000

 2.00000      2.00000      9.00000

 1.00000      1.00000      9.00000

y = SORTDATA(x, 2, Permutation = permutation)

; Use SORTDATA to sort x.

PM, y, Title = "Sorted Matrix:"

Sorted Matrix:

 1.00000      1.00000      1.00000

 1.00000      1.00000      9.00000

 1.00000      1.00000      3.00000

 1.00000      1.00000      4.00000

 1.00000      1.00000      8.00000

 1.00000      2.00000      6.00000

 2.00000      1.00000      2.00000

 2.00000      2.00000      9.00000

 NaN      2.00000      7.00000

 2.00000          NaN      5.00000

PM, permutation, Title = "Permutation Matrix:"

; Print the permutation vector.

Permutation Matrix:

 0

 9

 2

 3

 7

 5

 1

 8

 6

 4

z = x(permutation, *)

PM, z, Title = "Sorted Matrix"

; Use the permutation vector to sort the data.

Sorted Matrix

 1.00000      1.00000      1.00000

 1.00000      1.00000      9.00000

 1.00000      1.00000      3.00000

 1.00000      1.00000      4.00000

 1.00000      1.00000      8.00000
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 1.00000      2.00000      6.00000

 2.00000      1.00000      2.00000

 2.00000      2.00000      9.00000

 NaN 2.00000      7.00000

 2.00000          NaN      5.00000

RANKS Function 
Computes the ranks, normal scores, or exponential scores for a vector of 
observations.

Usage

result = RANKS(x)

Input Parameters

x — One-dimensional array containing the observations to be ranked. 

Returned Value

result — A one-dimensional array containing the rank (or optionally, a transfor-
mation of the rank) of each observation.

Input Keywords

Double — If present and nonzero, double precision is used.

Average_Tie, or
Highest, or
Lowest, or
Random_Split — At most, one of these keywords can be set to a nonzero value 
to change the method used to assign a score to tied observations. 

Keyword Method

Average_Tie average of the scores of the tied observa-
tions (default)

Highest highest score in the group of ties

Lowest lowest score in the group of ties
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Fuzz — Value used to determine when two items are tied. If 
ABS(x(I) – x(J)) is less than or equal to Fuzz, then x(I) and x(J) are said to be 
tied.

Default: Fuzz = 0.0

Ranks, or
Blom_Scores, or
Tukey_Scores, or
Vdw_Scores, or
Exp_Norm_Scores, or
Savage_Scores — At most, one of these keywords can be set to a nonzero 
value to specify the type of values returned.

Discussion

Ties

If the assignment RANK = RANKS(x) is made, then in data without ties, the 
output values are the ordinary ranks (or a transformation of the ranks) of the 
data in x. If x(i) has the smallest value among the values in x and there is no 
other element in x with this value, then RANK(i) = 1. If both x(i) and x(j) have 

Random_Split tied observations are randomly split using a 
random-number generator

Keyword Result

Ranks ranks (default)

Blom_Scores Blom version of normal scores

Tukey_Scores Tukey version of normal scores

Vdw_Scores Van der Waerden version of normal 
scores

Exp_Norm_Scores expected value of normal order statis-
tics (for tied observations, the average 
of the expected normal scores)

Savage_Scores Savage scores (expected value of expo-
nential order statistics)

Keyword Method
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the same smallest value, then the output value depends on the option used to 
break ties.

When the ties are resolved randomly, function RANDOM is used to generate 
random numbers. Different results occur from different executions of the pro-
gram unless the “seed” of the random-number generator is set explicitly by use 
of the function RANDOMOPT ( ).

Scores

Normal and other functions of the ranks can optionally be returned. Normal 
scores can be defined as the expected values, or approximations to the expected 
values, of order statistics from a normal distribution. The simplest approxima-
tions are obtained by evaluating the inverse cumulative normal distribution 
function, NORMALCDF (with keyword Inverse), at the ranks scaled into the 
open interval (0,1). 

In the Blom version (Blom 1958), the scaling transformation for the rank 
ri (1 ≤ ri ≤ n, where n is the sample size) is (ri – 3 / 8) / (n + 1 / 4). The Blom 
normal score corresponding to the observation with rank ri is 

where Φ(⋅) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if 
x(i) equals x(j) (within Fuzz) and their value is the k-th smallest in the data set, 
the Blom normal scores are determined for ranks of k and k + 1. Then, these 
normal scores are averaged or selected in the manner specified. (Whether the 
transformations are made first or the ties are resolved first is irrelevant, except 
when Average_Tie is specified.)

Keyword Result

Average_Tie result ( i ) = result ( j ) = 1.5

Highest result ( i ) = result ( j ) = 2.0

Lowest result ( i ) = result ( j ) = 1.0

Random_Split result ( i ) = 1.0 and result ( j ) = 2.0
or, randomly, result ( i ) = 2.0 and 
result ( j ) = 1.0

Φ 1– ri 3 8⁄–
n 1 4⁄+
-------------------
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In the Tukey version (Tukey 1962), the scaling transformation for the rank ri is 
(ri – 1 / 3) / (n + 1 / 3). The Tukey normal score corresponding to the observa-
tion with rank ri follows:

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transfor-
mation for the rank ri is ri / (n + 1). The Van der Waerden normal score 
corresponding to the observation with rank ri is as follows:

Ties are handled in the same way as for the Blom normal scores.

When option Exp_Norm_Scores is nonzero, the output values are the expected 
values of the normal order statistics from a sample of size 
n = N_ELEMNTS(x). If the value in x(i) is the k-th smallest, then the value out-
put in RANK (i) is E(zk), where E(·) is the expectation operator, and zk is the k-
th order statistic in a sample of size n from a standard normal distribution. Ties 
are handled in the same way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a 
sample of size n. These values are called Savage scores because of their use in 
a test discussed by Savage (1956) and Lehmann (1975). If the value in x(i) is 
the 
k-th smallest, then the value output in RANK (i) is E(yk) where yk is the k-th 
order statistic in a sample of size n from a standard exponential distribution. 
The expected value of the k-th order statistic from an exponential sample of size 
n follows:

Ties are handled in the same way as for the Blom normal scores.

Φ 1– ri 1 3⁄–
n 1 3⁄+
-------------------

 
 
 

Φ 1– ri

n 1+
------------

 
 
 

1
n
---

1
n 1–
------------ … 1

n k– 1+
---------------------+ + +
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Example 

The data for this example, from Hinkley (1977), contains 30 observations. Note 
that the fourth and sixth observations are tied, and the third and twentieth obser-
vations are tied.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,$

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,$

0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,$

1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,$

0.90, 2.05]

r = RANKS(x)

; Call RANKS.

FOR i = 0, 29 DO PM, i + 1, r(i), $

Format = ’(i5, f7.1)’

 1    5.0

 2   18.0

 3    6.5

 4   11.5

 5   21.0

 6   11.5

 7    2.0

 8   15.0

 9   29.0

 10   24.0

 11   27.0

 12   28.0

 13   16.0

 14   23.0

 15    3.0

 16   17.0

 17   13.0

 18    1.0

 19    4.0

 20    6.5

 21   26.0

 22   19.0

 23   10.0

 24   14.0

 25   30.0

 26   25.0

 27    9.0



RANKS Function  53

 28   20.0

 29    8.0

 30   22.0
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2

Regression

Contents of Chapter 

Multiple Linear Regression

Generates regressors for a 
general linear model................  REGRESSORS Function 

Fits a multiple linear regression 
model and optionally produces 
summary statistics 
for a regression model .........  MULTIREGRESS Function 

Computes predicted values, 
confidence intervals, 
and diagnostics ......................  MULTIPREDICT Function 

Variable Selection

All best regressions ........................ ALLBEST Procedure

Stepwise regression ....................  STEPWISE Procedure

Polynomial and Nonlinear Regression

Fits a polynomial 
regression model .................... POLYREGRESS Function

Computes predicted values, 
confidence intervals, 
and diagnostics ........................ POLYPREDICT Function
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Fits a nonlinear 
regression model. ..............  NONLINREGRESS Function

Multivariate Linear Regression—Statistical 
Inference and Diagnostics

Construction of a completely 
testable hypothesis ............. HYPOTH_PARTIAL Function

Sums of cross products for a 
multivariate hypothesis ........... HYPOTH_SCPH Function

Tests for the multivariate 
linear hypothesis ...................... HYPOTH_TEST Function

Polynomial and Nonlinear Regression

Fit a nonlinear regression model using 
Powell’s algorithm ......................... NONLINOPT Function

Alternatives to Least Squares Regression

LAV, Lpnorm, and LMV 
criteria regression ................LNORMREGRESS Function

Introduction
The regression models in this chapter include the simple and multiple linear 
regression models, the multivariate general linear model, the polynomial model, 
and the nonlinear regression model. Functions for fitting regression models, 
computing summary statistics from a fitted regression, computing diagnostics, 
and computing confidence intervals for individual cases are provided. Also pro-
vided are methods for building a model from a set of candidate variables. 

Simple and Multiple Linear Regression

The simple linear regression model is

yi = β0 + β1xi + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the xi’s are the settings of the independent (explanatory) 
variable, β0 and β1 are the intercept and slope parameters (respectively), and the 
εi’s are independently distributed normal errors, each with mean zero and vari-
ance σ2. The multiple linear regression model is
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yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the 
dependent variable; the xi1’s, xi2’s, ..., xik’s are the settings of the k independent 
(explanatory) variables; β0, β1, ... , βk are the regression coefficients; and the 
εi’s are independently distributed normal errors, each with mean zero and vari-
ance σ2.

Function MULTIREGRESS (page 77) fits both the simple and multiple linear 
regression models using a fast Given’s transformation and includes an option 
for excluding the intercept β0. The responses are input in array y, and the inde-
pendent variables are input in array x, where the individual cases correspond to 
the rows and the variables correspond to the columns. In addition to computing 
the fit, MULTIREGRESS also can optionally compute summary statistics.

After the model has been fitted using MULTIREGRESS, function MULTI-
PREDICT (page 93) computes predicted values, confidence intervals, and case 
statistics for the fitted model. The information about the fit is communicated 
from MULTIREGRESS to MULTIPREDICT by using keyword Predict_Info.

No Intercept Model

Several functions provide the option for excluding the intercept from a model. 
In most practical applications, the intercept should be included in the model. 
For functions that use the sum-of-squares and crossproducts matrix as input, the 
no-intercept case can be handled by using the raw sum-of-squares and 
crossproducts matrix as input in place of the corrected sum-of-squares and 
crossproducts. The raw sum-of-squares and crossproducts matrix can be com-
puted as

(x1, x2, ... , xk, y)T (x1, x2, ... , xk, y).

Variable Selection

Variable selection can be performed by ALLBEST (page 100), which computes 
all best-subset regressions, or by STEPWISE (page 109), which computes step-
wise regression. The method used by ALLBEST is generally preferred over that 
used by STEPWISE because ALLBEST implicitly examines all possible models 
in the search for a model that optimizes some criterion while stepwise does not 
examine all possible models. However, the computer time and memory require-
ments for ALLBEST can be much greater than that for STEPWISE when the 
number of candidate variables is large.



58  Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Polynomial Model

The polynomial model is

yi = β0 + β1 xi + β2 x2
i + ... + βk x

k
i + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the 
dependent variable; the xi’s are the settings of the independent (explanatory) 
variable; β0, β1, ..., βk are the regression coefficients; and the εi’s are indepen-
dently distributed normal errors each with mean zero and variance σ2.

Function POLYREGRESS (page 118) fits a polynomial regression model with 
the option of determining the degree of the model and also produces summary 
information. Function POLYPREDICT (page 125) computes predicted values, 
confidence intervals, and case statistics for the model fit by POLYREGRESS. 

The information about the fit is communicated from POLYREGRESS to 
POLYPREDICT by using keyword Predict_Info. 

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classifica-
tion variables. Typically, multiple regression models use continuous variables, 
whereas analysis of variance models use classification variables. Although the 
notation used to specify analysis of variance models and multiple regression 
models may look quite different, the models are essentially the same. The term 
“general linear model” emphasizes that a common notational scheme is used for 
specifying a model that may contain both continuous and classification 
variables.

A general linear model is specified by its effects (sources of variation). An 
effect is referred to in this text as a single variable or a product of variables. 
(The term “effect” is often used in a narrower sense, referring only to a single 
regression coefficient.) In particular, an “effect” is composed of one of the 
following: 

1. a single continuous variable 

2. a single classification variable 

3. several different classification variables 

4. several continuous variables, some of which may be the same 

5. continuous variables, some of which may be the same, and classification 
variables, which must be distinct 
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Effects of the first type are common in multiple regression models. Effects of 
the second type appear as main effects in analysis of variance models. Effects 
of the third type appear as interactions in analysis of variance models. Effects of 
the fourth type appear in polynomial models and response surface models as 
powers and crossproducts of some basic variables. Effects of the fifth type 
appear in analysis of covariance models as regression coefficients that indicate 
lack of parallelism of a regression function across the groups. 

The analysis of a general linear model occurs in two stages. The first stage calls 
function REGRESSORS (page 70) to specify all regressors except the inter-
cept. The second stage calls MULTIREGRESS (page 77), at which point the 
model is specified as either having (default) or not having an intercept. 

For the sake of this discussion, define a variable intcep as follows: 

The remaining parameters and keywords (n_continuous, n_class, 
Class_Columns, Var_Effects, and Indices_Effects) are defined for function 
REGRESSORS. All have defaults except for n_continuous and n_class, both of 
which must be specified. (See the documentation for REGRESSORS on 
page 70 for a discussion of the defaults.) The meaning of each of these input 
parameters is as follows:

n_continuous — Number of continuous variables. 

n_class — Number of classification variables.

Class_Columns — Index vector containing the column numbers of x that are 
the classification variables.

Var_Effects — Vector containing the number of variables associated with each 
effect in the model.

Indices_Effects — Index vector containing the column numbers of x for each 
variable for each effect.

Suppose the data matrix has as its first four columns two continuous variables 
in Columns 0 and 1 and two classification variables in Columns 2 and 3. The 
data might appear as follows:

Option intcep Action

No intercept 0 An intercept is not in the model.

Intercept (default) 1 An intercept is in the model.

Column 0 Column 1 Column 2 Column 3

11.23 1.23 1.0 5.0
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Each distinct value of a classification variable determines a level. The classifi-
cation variable in Column 2 has two levels. The classification variable in 
Column 3 has three levels. (Integer values are recommended, but not required, 
for values of the classification variables. The values of the classification vari-
ables corresponding to the same level must be identical.)

Some examples of regression functions and their specifications are as follows:

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

Regression Functions intcep n_class
Class_

Columns
Var_Effects

Indices_
Effects

β0 + β1x1 1 0 1 0

β0 + β1x1 + β2x2
1 1 0 1, 2 0, 0, 0

µ + αi 1 1 2 1 2

µ + αi + βj + γij 1 2 2, 3 1, 1, 2 2, 3, 2, 3

µij 0 2 2, 3 2 2, 3

β0 + β1x1 + β2x2 + β3x1x2 1 0 1, 1, 2 0, 1, 0, 1

µ + αi + βx1i + βix1i 1 1 2 1, 1, 2 2, 0, 0, 2

Column 0 Column 1 Column 2 Column 3
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Functions for Fitting the Model

Function MULTIREGRESS (page 77) fits a multiple general linear model, 
where regressors for the general linear model have been generated using func-
tion REGRESSORS (page 70). 

Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter 
are designed to handle linear dependence of the regressors; i.e., the n x p matrix 
X (the matrix of regressors) in the general linear model can have rank less than 
p. Often, the models are referred to as nonfull rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results 
of the fitted nonfull rank regression model for estimation and hypothesis testing. 
In the nonfull rank case, not all linear combinations of the regression coeffi-
cients can be estimated. Those linear combinations that can be estimated are 
called “estimable functions.” If the functions are used to attempt to estimate lin-
ear combinations that cannot be estimated, error messages are issued. A good 
general discussion of estimable functions is given by Searle (1971, pp. 180–
188).

The check used by functions in this chapter for linear dependence is sequential. 
The j-th regressor is declared linearly dependent on the preceding j – 1 regres-
sors if 1 – R2

j (1, 2, ..., j – 1)  is less than or equal to keyword Tolerance. Here, 
Rj (1, 2, ..., j – 1)  is the multiple correlation coefficient of the j-th regressor with the 
first j – 1 regressors. When a function declares the j-th regressor to be linearly 
dependent on the first j – 1, the j-th regression coefficient is set to zero. Essen-
tially, this removes the j-th regressor from the model.

The reason a sequential check is used is that practitioners frequently include the 
preferred variables to remain in the model first. Also, the sequential check is 
based on many of the computations already performed as this does not degrade 
the overall efficiency of the functions. There is no perfect test for linear depen-
dence when finite precision arithmetic is used. Keyword Tolerance allows the 
user some control over the check for linear dependence. If a model is full rank, 
input Tolerance = 0.0. However, Tolerance should be input as approximately 
100 times the machine precision. (See function MACHINE.)

Functions performing least squares are based on the QR decomposition of X or 
on a Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1–5) dis-
cusses these methods extensively. The R matrix used by the regression function 
is a p x p upper-triangular matrix, i.e., all elements below the diagonal are zero. 
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The signs of the diagonal elements of R are used as indicators of linearly depen-
dent regressors and as indicators of parameter restrictions imposed by fitting a 
restricted model. The rows of R can be partitioned into three classes by the sign 
of the corresponding diagonal element:

1. A positive diagonal element means the row corresponds to data.

2. A negative diagonal element means the row corresponds to a linearly inde-
pendent restriction imposed on the regression parameters by AB = Z in a 
restricted model.

3. A zero diagonal element means a linear dependence of the regressors was 
declared. The regression coefficients in the corresponding row of

 

are set to zero. This represents an arbitrary restriction that is imposed to 
obtain a solution for the regression coefficients. The elements of the corre-
sponding row of R also are set to zero.

Nonlinear Regression Model

The nonlinear regression model is

yi = f(xi ; θ) + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the xi’s are the known vectors of values of the independent 
(explanatory) variables, f is a known function of an unknown regression param-
eter vector θ, and the εi’s are independently distributed normal errors each with 
mean zero and variance σ2.

Function NONLINREGRESS (page 132) performs the least-squares fit to the 
data for this model.

Weighted Least Squares

Functions throughout this chapter generally allow weights to be assigned to the 
observations. Keyword Weights is used throughout to specify the weighting for 
each row of X.

Computations that relate to statistical inference—e.g., t tests, F tests, and confi-
dence intervals—are based on the multiple regression model except that the 
variance of εi is assumed to equal σ2 times the reciprocal of the corresponding 
weight.

B
ˆ
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If a single row of the data matrix corresponds to ni observations, keyword Fre-
quencies can be used to specify the frequency for each row of X. Degrees of 
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics

Function MULTIREGRESS (page 77) can be used to compute statistics related 
to a regression for each of the q dependent variables fitted. The summary statis-
tics include the model analysis of variance table, sequential sum of squares and 
F-statistics, coefficient estimates, estimated standard errors, t-statistics, variance 
inflation factors, and estimated variance-covariance matrix of the estimated 
regression coefficients. Function POLYREGRESS (page 118) includes most of 
the same functionality for polynomial regressions.

The summary statistics are computed under the model y = Xβ + ε, where y is 
the 
n x 1 vector of responses, X is the n x p matrix of regressors with rank (X) = r, 
β is the p x 1 vector of regression coefficients, and ε is the n x 1 vector of 
errors whose elements are independently normally distributed with mean zero 
and variance 
σ2 / wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as 
the weights), most of the computed summary statistics are output in the follow-
ing keywords:

Anova_Table — One-dimensional array, usually of length 15. In STEPWISE, 
Anova_Table is of length 13 because the last two elements of the array cannot 
be computed from the input. The array contains statistics related to the analysis 
of variance. The sources of variation examined are the regression, error, and 
total. The first 10 elements of Anova_Table and the notation frequently used for 
these is described in the following table (here, Aov replaces Anova_Table):
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Model Analysis of Variance Table 

If the model has an intercept (default), the total sum of squares is the sum of 
squares of the deviations of yi from its (weighted) mean

,

the so-called corrected total sum of squares denoted by the following:

If the model does not have an intercept (No_Intercept), the total sum of squares 
is the sum of squares of yi — the so-called uncorrected total sum of squares 
denoted by the following:

The error sum of squares is given as follows:

The error degrees of freedom is defined by DFE = n – r.

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0:β1 = β2 = ... = βk = 0, ver-
sus the alternative that at least one coefficient is nonzero is given by F = MSR/
s2. The p-value associated with the test is the probability of an F larger than that 
computed under the assumption of the model and the null hypothesis. A small 

Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean
Square F p-value

Regression DFR = Aov (0) SSR = Aov (3) MSR = Aov (6) Aov (8) Aov (9)

Error DFE = Aov (1) SSE = Aov (4) s2 = Aov (7) 

Total DFT = Aov (2) SST = Aov (5) 

y

SST wi yi y–( )2
n

∑=

SST wiyi
2

n

∑=

SSE wi yi ŷi–( )2
n

∑=
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p-value (less than 0.05) is customarily used to indicate there is sufficient evi-
dence from the data to reject the null hypothesis.

The remaining five elements in Anova_Table frequently are displayed together 
with the actual analysis of variance table. The quantities R-squared 
(R2 = Anova_Table(10)) and adjusted R-squared (R2

a = Anova_Table(11)) are 
expressed as a percentage and are defined as follows:

The square root of s2 (s = Anova_Table(12)) is frequently referred to as the esti-
mated standard deviation of the model error.

The overall mean of the responses

 

is output in Anova_Table (13).

The coefficient of variation (CV = Anova_Table(14)) is expressed as a percent-
age and defined by 

.

T_Tests — Two-dimensional matrix containing the regression coefficient vector

 

as one column and associated statistics (estimated standard error, t statistic and 
p-value) in the remaining columns. 

Coef_Covariances — Estimated variance-covariance matrix of the estimated 
regression coefficients.

Tests for Lack-of-Fit

Tests for lack-of-fit are computed for the polynomial regression by function 
POLYREGRESS (page 118). Output keyword Ssq_Lof returns the lack-of-fit F 
tests for each degree polynomial 1, 2, ..., k, that is fit to the data. These tests are 
used to indicate the degree of the polynomial required to fit the data well.

R2 100 SSR/SST( ) 100 1 SSE/SST–( )= =

Ra
2 100 1

s2

SST DFT⁄
-------------------------– 

 =

y

CV 100s/y=

β
ˆ
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Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by two functions 
in the regression chapter: MULTIPREDICT (page 93) for linear and nonlinear 
regressions and POLYPREDICT (page 125) for polynomial regressions.

Statistics computed include predicted values, confidence intervals, and diagnos-
tics for detecting outliers and cases that greatly influence the fitted regression.

The diagnostics are computed under the model y = Xβ + ε, where y is the n x 1 
vector of responses, X is the n x p matrix of regressors with rank (X) = r, β is 
the p x 1 vector of regression coefficients, and ε is the n x 1 vector of errors 
whose elements are independently normally distributed with mean zero and 
variance σ2 / wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as 
the weights), the following five diagnostics are computed:

1. leverage

2. standardized residual

3. jackknife residual

4. Cook’s distance

5. DFFITS

The definitions of these terms are given in the discussion below.

Let xi be a column vector containing the elements of the i-th row of X. A case 
can be unusual either because of xi or because of the response yi. The leverage 
hi is a measure of uniqueness of the xi. The leverage is defined by

where W = diag(w1, w2, ..., wn) and (XTWX)– denotes a generalized inverse of 
XTWX. The average value of the hi’s is r/n. Regression functions declare xi 
unusual if hi > 2r/n. Hoaglin and Welsch (1978) call a data point highly influen-
tial (i.e., a leverage point) when this occurs.

Let ei denote the residual

 

for the i-th case. 

hi xi
T XTWX( )

_
xi[ ]wi=

yi ŷi–
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The estimated variance of ei is (1 – hi)s
2 / wi, where s2 is the estimated standard 

deviation of the model error. The i-th standardized residual (also called the 
internally studentized residual) is by definition 

 

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yi 
and its predicted value, based on the data set in which the i-th case is deleted. 
This difference equals ei / (1 – hi). The jackknife residual is obtained by stan-
dardizing this difference. The residual mean square for the regression in which 
the i-th case is deleted is as follows:

The jackknife residual is defined as

and ti follows a t distribution with n – r – 1 degrees of freedom. 

Cook’s distance for the i-th case is a measure of how much an individual case 
affects the estimated regression coefficients. It is given as follows:

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n – r) 
distribution, it should be considered large. (This value is about 1. This statistic 
does not have an F distribution.)

ri ei

wi

s
2 1 hi–( )

----------------------=

si
2 n r–( )s2 wiei

2/ 1 hi–( )–
n r– 1–

----------------------------------------------------------=

ti ei

wi

si
2 1 hi–( )

----------------------=

Di

wihiei
2

rs2 1 hi–( )2
---------------------------=
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DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, 
DFFITS is computed by the following formula:

Hoaglin and Welsch (1978) suggest that DFFITS greater than 

 

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to 
satisfy the regression model. The inclusion of squares and crossproducts of the 
variables (x1, x2, x2

1, x2
2, x1x2) often is needed. Logarithms of the independent 

variables also are used. (See Draper and Smith 1981, pp. 218–222; 
Box and Tidwell 1962; Atkinson 1985, pp. 177–180; and Cook and Weisberg 
1982, pp. 78–86.)

When the responses are described by a nonlinear function of the parameters, a 
transformation of the model equation often can be selected so that the trans-
formed model is linear in the regression parameters. For example, by taking 
natural logarithms on both sides of the equation, the exponential model

can be transformed to a model that satisfies the linear regression model 
provided the εi’s have a log-normal distribution (Draper and Smith 1981, pp. 
222–225).

When the responses are nonnormal and their distribution is known, a transfor-
mation of the responses often can be selected so that the transformed responses 
closely satisfy the regression model assumptions. The square-root transforma-
tion for counts with a Poisson distribution and the arc-sine transformation for 
binomial proportions are common examples (Snedecor and Cochran 1967, 
pp. 325–330; Draper and Smith 1981, pp. 237–239).

DFFITSi ei

wihi

si
2 1 hi–( )2

-------------------------=

2 r/n

y e
β0 β1x1+

ε=
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Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are 
normally distributed, e.g., a least-squares solution produces maximum likeli-
hood estimates of the regression parameters. However, when errors are not 
normally distributed, least squares may yield poor estimators. Function 
LNORMREGRESS  offers three alternatives to least squares methodology, 
Least Absolute Value, Lp Norm, and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood esti-
mate when the errors follow a Laplace distribution. Keyword Lav (page 170) is 
often used when the errors have a heavy tailed distribution or when a fit is 
needed that is resistant to outliers. 

A more general approach, minimizing the Lp norm (p ≤ 1), is given by keyword 
Llp (page 169). Although the routine requires about 30 times the CPU time for 
the case p = 1 than would the use of  keyword Lav, the generality of Llp allows 
the user to try several choices for p ≥ 1 by simply changing the input value of p 
in the calling program. The CPU time decreases as p gets larger. Generally, 
choices of p between 1 and 2 are of interest. However, the Lp norm solution for 
values of p larger than 2 can also be computed.

The minimax (LMV, L∞, Chebyshev) criterion is used by setting keyword Lmv 
(page 170). Its estimates are very sensitive to outliers, however, the minimax 
estimators are quite efficient if the errors are uniformly distributed. 

Missing Values

NaN (Not a Number) is the missing value code used by the regression func-
tions. Use function MACHINE to retrieve NaN. Any element of the data matrix 
that is missing must be set to NaN. In fitting regression models, any observation 
containing NaN for the independent, dependent, weight, or frequency variables 
is omitted from the computation of the regression parameters.



70  Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

REGRESSORS Function 
Generates regressors for a general linear model.

Usage

result = REGRESSORS(x, n_class, n_continuous)

Input Parameters

x — Two-dimensional array containing the data. The columns must be ordered 
such that the first n_class columns contain the class variables and the next 
n_continuous columns contain the continuous variables. (Exception: See key-
word Class_Columns.)

n_class — Number of classification variables.

n_continuous — Number of continuous variables.

Returned Value

result — A two-dimensional array containing the regressor variables generated 
from x.

Input Keywords

Double — If present and nonzero, double precision is used.

Class_Columns — One-dimensional array of length n_class containing the col-
umn numbers of x that are the classification variables. The remaining 
n_continuous variables are assumed to correspond to the columns of x in the 
range 0, ..., n_class – 1 that are not listed in Class_Columns.

Default: Class_Columns = [0, 1, ..., n_class – 1] 

Order — Order of the model. Model order can be specified as 1 or 2. Use key-
word Indices_Effects to specify more complicated models. The keywords 
Var_Effects and Indices_Effects must be used together.

Default: Order = 1

Var_Effects — One-dimensional array containing the number of variables asso-
ciated with each effect in the model. The keywords Var_Effects and 
Indices_Effects must be used together.
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Indices_Effects — One-dimensional array of length Var_Effects (0) + 
Var_Effects (1) + ... Var_Effects (N_ELEMENTS (Var_Effects) – 1) . The first 
Var_Effects(0) elements give the column numbers of x for each variable in the 
first effect. The next Var_Effects(1) elements give the column numbers for each 
variable in the second effect. The last Var_Effects (N_ELEMENTS 
(Var_Effects) – 1) elements give the column numbers for each variable in the 
last effect. Keywords Var_Effects and Indices_Effects must be used together.

Dummy_Method — Dummy variable option. Indicator variables are defined for 
each class variable as described in the Discussion section. Dummy variables are 
then generated from the n indicator variables in one of the following three 
ways:

Discussion

Function REGRESSORS generates regressors for a general linear model from a 
data matrix. The data matrix can contain classification variables as well as con-
tinuous variables. Regressors for effects composed solely of continuous 
variables are generated as powers and crossproducts. Consider a data matrix 
containing continuous variables as Columns 3 and 4. The effect indices (3, 3) 
generate a regressor whose i-th value is the square of the i-th value in Column 
3. The effect indices (3, 4) generates a regressor whose i-th value is the product 
of the i-th value in Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification 
variable are generated using indicator variables. Let the classification variable A 

Dummy_Method Method

(Default) The n indicator variables are the dummy 
variables.

1 Dummies are the first n – 1 indicator variables.

2 The n – 1 dummies are defined in terms of the 
indicator variables so that for balanced data, the 
usual summation restrictions are imposed on the 
regression coefficients.
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take on values a1, a2, ..., an. From this classification variable, REGRESSORS 
creates n indicator variables. For k = 1, 2, ..., n:

For each classification variable, another set of variables is created from the indi-
cator variables. These new variables are called dummy variables. Dummy 
variables are generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables. (Default method)

2. The dummies are the first n – 1 indicator variables. (Dummy_Method = 1)

3. The n – 1 dummies are defined in terms of the indicator variables so that 
for balanced data, the usual summation restrictions are imposed on the 
regression coefficients. (Dummy_Method = 2)

In particular, for the default case, the dummy variables are 
Ak = Ik (k = 1, 2, ..., n). For Dummy_Method = 1, the dummy variables are Ak = 
Ik (k = 1, 2, ..., n – 1). For Dummy_Method = 2, the dummy variables are Ak = 
Ik – In (k = 1, 2, ..., n – 1). The regressors generated for an effect composed of a 
single-classification variable are the associated dummy variables. 

Let mj be the number of dummies generated for the j-th classification variable. 
Suppose there are two classification variables A and B with dummies 

 and . 

The regressors generated for an effect composed of two classification variables 
A and B are 

 

=

.

More generally, the regressors generated for an effect composed of several clas-
sification variables and several continuous variables are given by the Kronecker 
products of variables, where the order of the variables is specified in 
Indices_Effects. Consider a data matrix containing classification variables in 
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these 

Ik

1 if  A = ak

0 otherwise






=

A1 A2 ... Am
1

, , , B1 B2 ... Bm2, , ,

A B⊗ A1 A2 ... Am1
, , ,( ) B1 B2 ... Bm2

, , ,( )⊗=

A1B1 A1B2 ... A1Bm2
A2B1 A2B2 ... A2Bm2

..., , , ,, , , ,(

Am1
B1 Am1

B2 ... Am1
Bm2

), , ,
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four columns A, B, X1, and X2. The regressors generated by the effect indices (0, 
1, 2, 2, 3) are

A ⊗ B ⊗ X1X1X2 .

Remarks

Let the data matrix x = (A, B, X1), where A and B are classification variables 
and X1 is a continuous variable. The model containing the effects A, B, AB, X1, 
AX1, BX1, and ABX1 is specified as follows (use optional keyword 
Indices_Effects):

n_class = 2

n_continuous = 1

Var_Effects = [1, 1, 2, 1, 2, 2, 3]

Indices_Effects = [0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2]

For this model, suppose that variable A has two levels, A1 and A2, and that vari-
able B has three levels, B1, B2, and B3. For each Dummy_Method option, the 
regressors in their order of appearance in REGRESSORS are given below.

Within a group of regressors corresponding to an interaction effect, the indicator 
variables composing the regressors vary most rapidly for the last classification 
variable, next most rapidly for the next to last classification variable, etc.

By default, REGRESSORS internally generates values for Var_Effects and 
Indices_Effects, which correspond to a first order model with 
NEF = n_continuous + n_class. The variables then are used to create the 
regressor variables. The effects are ordered such that the first effect corre-

Dummy_Method Regressors

(Default) A1, A2, B1, B2, B3, A1 B1, A1 B2, A1 B3, A2 B1, A2 B2, 
A2 B3, X1, A1 X1, A2 X1, B1 X1, B2 X1, B3 X1, A1 B1 X1, 
A1 B2 X1, A1 B3 X1, A2 B1 X1, A2 B2 X1, A2 B3 X1

1 A1, B1, B2, A1 B1, A1 B2, X1, A1 X1, B1 X1, B2 X1, 
A1 B1 X1, A1 B2 X1 

2 A1 – A2, B1 – B3, B2 – B3, (A1 – A2) (B1 – B2),
(A1 – A2) (B2 – B3), X1, (A1 – A2) X1, (B1 – B3) X1, 
(B2 – B3) X1, (A1 – A2) (B1 – B2) X1, (A1 – A2) (B2 – B3) X1
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sponds to the first column of x, the second effect corresponds to the second 
column of x, etc. A second order model corresponding to the columns (vari-
ables) of x is generated if Order with Order = 2 is specified.

There are

effects, where NVAR = n_continuous + n_class. The first NVAR effects corre-
spond to the columns of x, such that the first effect corresponds to the first 
column of x, the second effect corresponds to the second column of x, ..., the 
NVAR-th effect corresponds to the NVAR-th column of x (i.e., x (NVAR – 1)). 
The next n_continuous effects correspond to squares of the continuous vari-
ables. The last 

effects correspond to the two-variable interactions.

•  Let the data matrix x = (A, B, X1), where A and B are classification vari-
ables and X1 is a continuous variable. The effects generated and order of 
appearance is A, B, X1, X2

1, AB, AX1, BX1.

•  Let the data matrix x = (A, X1, X2), where A is a classification variable and 
X1 and X2 are continuous variables. The effects generated and order of 
appearance is A, X1, X2, X2

1, X2
2, AX1, AX2, X1X2.

•  Let the data matrix x = (X1, A, X2) (see Class_Columns), where A is a clas-
sification variable and X1 and X2 are continuous variables. The effects 
generated and order of appearance is X1, A, X2, X2

1, X2
2, X1A, X1X2, AX2.

Higher-order and more complicated models can be specified using 
Indices_Effects. 

Example 1

In the following example, there are two classification variables, A and B, with 
two and three values, respectively. Regressors for a one-way model (the default 
model order) are generated using the ALL dummy method (the default dummy 
method). The five regressors generated are A1, A2, B1, B2, B3.

labels = ["A1", "A2", "B1", "B2", "B3"] 

NEF n_class 2*n_continuous NVAR

2 
 
 

+ +=

NVAR

2 
 
 



REGRESSORS Function  75

; Define some labels for printing later. 

RM, x, 6, 2 

; Enter the data. 

row 0: 10  5 

row 1: 20 15 

row 2: 20 10 

row 3: 10 10 

row 4: 10 15 

row 5: 20  5 

reg = REGRESSORS(x, 2, 0) 

; Call REGRESSORS. 

PM, labels, reg, $
Format = "(5a8, /, 6(5f8.1, /))" 

; Print the results. 

A1      A2      B1      B2      B3 

1.0     0.0     1.0     0.0     0.0 

0.0     1.0     0.0     0.0     1.0 

0.0     1.0     0.0     1.0     0.0 

1.0     0.0     0.0     1.0     0.0 

1.0     0.0     0.0     0.0     1.0 

0.0     1.0     1.0     0.0     0.0

Example 2

In this example, a two-way analysis of covariance model containing all the 
interaction terms is fit. First, REGRESSORS is called to produce a matrix of 
regressors, reg, from the data x. The regressors, generated using 
Dummy_Method = 1, are the model whose mean function is

µ + αi + βj + γij + δxij + ζixij + ηjxij + θijxij  i = 1, 2; j = 1, 2, 3

where α2 = β3 = γ21 = γ22 = γ23 = ζ2 = η3 = θ21 = θ22 = θ23 = 0 .

labels = ["Alpha1", "Beta1", "Beta2", $ "Gamma11", "Gamma12", 
"Delta", "Zeta1", $
"Eta1", "Eta2", "Theta11", "Theta12"] 

; Define some labels to use in printing the results. 

x = transpose([ [1.0, 1.0, 1.11], $
[1.0, 1.0, 2.22], [1.0, 1.0, 3.33], $
[1.0, 2.0, 1.11], [1.0, 2.0, 2.22], $
[1.0, 2.0, 3.33], [1.0, 3.0, 1.11], $
[1.0, 3.0, 2.22], [1.0, 3.0, 3.33], $
[2.0, 1.0, 1.11], [2.0, 1.0, 2.22], $
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[2.0, 1.0, 3.33], [2.0, 2.0, 1.11], $
[2.0, 2.0, 2.22], [2.0, 2.0, 3.33], $
[2.0, 3.0, 1.11], [2.0, 3.0, 2.22], $
[2.0, 3.0, 3.33]])

Var_Effects = [1, 1, 2, 1, 2, 2, 3] 

Indices_Effects = $
[0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2] 

reg = REGRESSORS(x, 2, 1, Dummy_Method = 1, $

Var_Effects = var_effects, $

Indices_Effects = indices_effects) 

; Call REGRESSORS. 

PM, labels(0:5), reg(*, 0:5), $

Format = "(6a9, /, 18(6f9.2, /))" 

; Output the results. 

Alpha1  Beta1  Beta2 Gamma11 Gamma12 Delta

  1.0    1.0    0.0    1.0     0.0    1.1

 1.00   1.00   0.00   1.00    0.00   2.22

 1.00   1.00   0.00   1.00    0.00   3.33

 1.00   0.00   1.00   0.00    1.00   1.11

 1.00   0.00   1.00   0.00    1.00   2.22

 1.00   0.00   1.00   0.00    1.00   3.33

 1.00   0.00   0.00   0.00    0.00   1.11

 1.00   0.00   0.00   0.00    0.00   2.22

 1.00   0.00   0.00   0.00    0.00   3.33

 0.00   1.00   0.00   0.00    0.00   1.11

 0.00   1.00   0.00   0.00    0.00   2.22

 0.00   1.00   0.00   0.00    0.00   3.33

 0.00   0.00   1.00   0.00    0.00   1.11

 0.00   0.00   1.00   0.00    0.00   2.22

 0.00   0.00   1.00   0.00    0.00   3.33

 0.00   0.00   0.00   0.00    0.00   1.11

 0.00   0.00   0.00   0.00    0.00   2.22

 0.00   0.00   0.00   0.00    0.00   3.33

PM, labels(6:10), reg(*, 6:10), $
Format = "(5a9, /, 18(5f9.2, /))" 

Zeta1    Eta1     Eta2   Theta11  Theta12

 1.1      1.1      0.0      1.1      0.0

2.22     2.22     0.00     2.22     0.00

3.33     3.33     0.00     3.33     0.00

1.11     0.00     1.11     0.00     1.11

2.22     0.00     2.22     0.00     2.22
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3.33     0.00     3.33     0.00     3.33

1.11     0.00     0.00     0.00     0.00

2.22     0.00     0.00     0.00     0.00

3.33     0.00     0.00     0.00     0.00

0.00     1.11     0.00     0.00     0.00

0.00     2.22     0.00     0.00     0.00

0.00     3.33     0.00     0.00     0.00

0.00     0.00     1.11     0.00     0.00

0.00     0.00     2.22     0.00     0.00

0.00     0.00     3.33     0.00     0.00

0.00     0.00     0.00     0.00     0.00

0.00     0.00     0.00     0.00     0.00

0.00     0.00     0.00     0.00     0.00

MULTIREGRESS Function 
Fits a multiple linear regression model using least squares and optionally com-
pute summary statistics for the regression model.

Usage

result = MULTIREGRESS(x, y)

Input Parameters 

x — Two-dimensional matrix containing the independent (explanatory) vari-
ables. The data value for the i-th observation of the j-th independent 
(explanatory) variable should be in element x(i, j).

y — Two-dimensional matrix containing of size N_ELEMENTS(x(*,0)) by 
n_dependent  containing the dependent (response) variables(s). The i-th column 
of y contains the i-th dependent variable.

Returned Value 

result — If keyword No_Intercept is not used, MULTIREGRESS is an array of 
length N_ELEMENTS (x(*, 0)) containing a least-squares solution for the 
regression coefficients. The estimated intercept is the initial component of the 
array.
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Input Keywords

Double — If present and nonzero, double precision is used.

No_Intercept — If present and nonzero, the intercept term 

is omitted from the model. By default, the fitted value for observation i is 

, 

where k is the number of independent variables.

Tolerance — Tolerance used in determining linear dependence. For MULTI-
GRESS, Tolerance = 100 x ε, where ε is machine precision, is the default 
choice.

Frequencies — One-dimensional array containing the frequency for each 
observation.

Default: Frequencies(*) = 1

Weights — One-dimensional array containing the weight for each observation.

Default: Weights(*) = 1

Predict_Info — Named variable into which the one-dimensional byte array 
containing information needed by MULTIPREDICT (page 93) is stored. The 
data contained in this array is in an encrypted format and should not be altered 
before it is used in subsequent calls to MULTIPREDICT.

Output Keywords

Rank — Named variable into which the rank of the fitted model is stored.

Coef_Covariances — Named variable into which the m x m x n_dependent 
array containing the estimated variances and covariances of the estimated 
regression coefficients is stored. Here, m is the number of regression coeffi-
cients in the model. If No_Intercept is specified, m = N_ELEMENTS(x(0, *)); 
otherwise, m = (N_ELEMENTS(x(0, *)) + 1).

XMean — Named variable into which the array containing the estimated means 
of the independent variables is stored.

β̂0

β̂0 β̂1x1 … β̂kxk+ + +
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Residual — Named variable into which the array containing the residuals is 
stored.

Anova_Table — Named variable into which the array containing the analysis of 
variance table is stored.  Each column of Anova_table corresponds to a depen-
dent variable. The analysis of variance statistics are given as follows: 

T_Tests — Named variable into which the NPAR (where NPAR is equal to the 
number of parameters in the model) by 4 array containing statistics relating to 
the regression coefficients is stored.

Each row corresponds to a coefficient in the model, where NPAR is the num-
ber of parameters in the model. Row i + INTCEP corresponds to the i-th 
independent variable, where INTCEP is equal to 1 if an intercept is in the 

Element Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)
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model and 0 otherwise, and i = 0, 1, 2, ..., NPAR – 1. The statistics in the 
columns are as follows:

Coef_Vif — Named variable into which a one-dimensional array of length 
NPAR containing the variance inflation factor, where NPAR is the number of 
parameters, is stored. The (i + INTCEP)-th element corresponds to the i-th inde-
pendent variable, where i = 0, 1, 2, ..., NPAR – 1, and INTCEP is equal to 1 if 
an intercept is in the model and 0 otherwise. The square of the multiple correla-
tion coefficient for the i-th regressor after all others is obtained from Coef_Vif 
by the following formula:

If there is no intercept or there is an intercept and i = 0, the multiple correla-
tion coefficient is not adjusted for the mean.

Discussion 

Function MULTIREGRESS fits a multiple linear regression model with or with-
out an intercept. 

By default, the multiple linear regression model is 

yi = β0 + β1xi1 + β2xi2 + … + βkxik + εi     i = 0, 2 , …, n 

where the observed values of the yi’s (input in y) are the responses or values of 
the dependent variable; the xi1’s, xi2’s, ..., xik’s (input in x) are the settings of the 
k independent variables; β0, β1, ..., βk are the regression coefficients whose esti-
mated values are to be output by MULTIREGRESS; and the εi’s are 
independently distributed normal errors, each with mean zero and variance σ2. 
Here, 
n = (N_ELEMENTS(x(*, 0))). Note that by default, β0 is included in the model.

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient 
estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

1.0
1.0

Coef_Vif i( )
----------------------------–
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Function MULTIREGRESS computes estimates of the regression coefficients 
by minimizing the weighted sum of squares of the deviations of the observed 
response yi from the fitted response

 

for the n observations. This weighted minimum sum of squares (the error sum 
of squares) is output as one of the analysis of variance statistics if Anova_Table 
is specified and is computed as shown below.

Another analysis of variance statistics is the total sum of squares. By default, 
the weighted total sum of squares is the weighted sum of squares of the devia-
tions of yi from its mean

, 

the so-called corrected total sum of squares. This statistic is computed as 
follows:

When No_Intercept is specified, the total weighted sum of squares is the sum of 
squares of yi, the so called uncorrected total weighted sum of squares. This is 
computed as follows:

See Draper and Smith (1981) for a good general treatment of the multiple linear 
regression model, its analysis, and many examples.

In order to compute a least-squares solution, MULTIREGRESS performs an 
orthogonal reduction of the matrix of regressors to upper-triangular form. The 
reduction is based on one pass through the rows of the augmented matrix (x, y) 
using fast Givens transformations (Golub and Van Loan 1983, pp. 156–162; 

ŷi

SSE wi yi ŷi–( )2

i 1=

n

∑=

y

SST wi yi y–( )2

i 1=

n

∑=

SST wi yi
2

n

∑=
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Gentleman 1974). This method has the advantage that it avoids the loss of accu-
racy that results from forming the crossproduct matrix used in the normal 
equations.

By default, the current means of the dependent and independent variables are 
used to internally center the data for improved accuracy. Let xj be a column 
vector containing the j-th row of data for the independent variables. Let

 

represent the mean vector for the independent variables given the data for rows 
0, 1, ..., i. The current mean vector is defined to be 

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data 
has

 

subtracted from it and is multiplied by

 

Although a crossproduct matrix is not computed, the validity of this centering 
operation can be seen from the formula below for the sum-of-squares and 
crossproducts matrix. 

An orthogonal reduction on the centered matrix is computed. When the final 
computations are performed, the intercept estimate and the first row and column 
of the estimated covariance matrix of the estimated coefficients are updated (if 
Coef_Covariances is specified) to reflect the statistics for the original (uncen-

xi

xi

wj fj xj
j 1=

i

∑
wj fj

----------------------------=

xi

wi f i

ai

ai 1–
----------

wi f i xi xn–( ) xi xn–( )T

i 1=

n

∑
ai

ai 1–
----------w i fi xi xi–( ) xi xi–( )T

i 2=

n

∑=
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tered) data. This means that the estimate of the intercept is for the uncentered 
data.

As part of the final computations, MULTIGRESS checks for linearly dependent 
regressors. In particular, linear dependence of the regressors is declared if any 
of the following three conditions is satisfied:

•  A regressor equals zero.

•  Two or more regressors are constant. 

•  The expression

 

is less than or equal to Tolerance. Here, Ri·1, 2, ..., i – 1 is the multiple correla-
tion coefficient of the i-th independent variable with the first i – 
1independent variables. If no intercept is in the model, the “multiple corre-
lation” coefficient is computed without adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be 
linearly dependent upon the previous i – 1 regressors, then the i-th coefficient 
estimate and all elements in the i-th row and i-th column of the estimated vari-
ance-covariance matrix of the estimated coefficients (if Coef_Covariances is 
specified) are set to zero. Finally, if a linear dependence is declared, an informa-
tional (error) message, code STAT_RANK_DEFICIENT, is issued indicating 
the model is not full rank.

Function MULTIREGRESS also can be used to compute summary statistics 
from a fitted general linear model. The model is y = Xβ + ε, where y is the n x 
1 vector of responses, X is the n x p matrix of regressors, β is the p x 1 vector 
of regression coefficients, and ε is the  n x 1vector of errors whose elements are 
each independently distributed with mean zero and variance σ2. Function MUL-
TIREGRESS uses the results of this fit to compute summary statistics, 
including analysis of variance, sequential sum of squares, t tests, and an esti-
mated variance-covariance matrix of the estimated regression coefficients.

Some generalizations of the general linear model are allowed. If the i-th ele-
ment of ε has variance of

1 Ri 1 2 … i 1–, , ,⋅
2–

σ2

wi

-----
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and the weights wi are used in the fit of the model, MULTIREGRESS produces 
summary statistics from the weighted least-squares fit. More generally, if the 
variance-covariance matrix of ε is σ2V, MULTIREGRESS can be used to pro-
duce summary statistics from the generalized least-squares fit. Function 
MULTIREGRESS can be used to perform a generalized least-squares fit by 
regressing y*on X* where y* = (T –1)Ty, X* = (T –1)TX and T satisfies TTT = V. 

The sequential sum of squares for the i-th regression parameter is given by

. 

The regression sum of squares is given by the sum of the sequential sum of 
squares. If an intercept is in the model, the regression sum of squares is 
adjusted for the mean, i.e.,

 

is not included in the sum.

The estimate of σ2 is s2 (stored in Anova_Table(7) that is computed as SSE/
DFE.

If R is nonsingular, the estimated variance-covariance matrix of

(stored in Coef_Covariances) is computed by s2R 
–1(R –1)T.

If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For 
a matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy 
conditions j (for j ≤ i) for the Moore-Penrose inverse but generally must fail 
conditions k (for k > i). The four conditions for G to be a Moore-Penrose 
inverse of A are as follows:

1.  AGA = A

2.  GAG = G

3. AG is symmetric 

4. GA is symmetric

In the case where R is singular, the method for obtaining Coef_Covariances fol-
lows the discussion of Maindonald (1984, 

Rβ
ˆ

 
  2

Rβ
ˆ

 
  2

β
ˆ
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pp. 101–103). Let Z be the diagonal matrix with diagonal elements defined by 
the following:

Let G be the solution to RG = Z obtained by setting the i-th ({i:rii = 0}) row of 
G to zero. Keyword Coef_Covariances is set to s2GGT. (G is a g3 inverse of R, 
represented by

, 

the result  

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that keyword Coef_Covariances can be used only to get variances and 
covariances of estimable functions of the regression coefficients, i.e., nonesti-
mable functions (linear combinations of the regression coefficients not in the 
space spanned by the nonzero rows of R) must not be used. See, for example, 
Maindonald (1984, pp. 166–168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in 
Column 1 of T_Tests) are computed as square roots of the corresponding diago-
nal entries in Coef_Covariances.

For the case where an intercept is in the model, set

 

equal to the matrix R with the first row and column deleted. Generally, the vari-
ance inflation factor (VIF) for the i-th regression coefficient is computed as the 
product of the i-th diagonal element of RTR and the i-th diagonal element of its 
computed inverse. If an intercept is in the model, the VIF for those coefficients 
not corresponding to the intercept uses the diagonal elements of

 

(see Maindonald 1984, p. 40).

zii
1 if rii 0≠
0 ifrii 0=




=

R
g3

R
g3R

g3T

R

R
T
R
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Remarks

When R is nonsingular and comes from an unrestricted regression fit, 
Coef_Covariances is the estimated variance-covariance matrix of the estimated 
regression coefficients and Coef_Covariances = (SSE/DFE) (RTR)–1. 

Otherwise, variances and covariances of estimable functions of the regression 
coefficients can be obtained using Coef_Covariances and Coef_Covariances = 
(SSE/DFE) (GDGT). Here, D is the diagonal matrix with diagonal elements 
equal to zero if the corresponding rows of R are restrictions and with diagonal 
elements equal to 1 otherwise. Also, G is a particular generalized inverse of R.

Example 1

A regression model 

yi = β0 + β1x i 1 + β2x i 2 + β3 x i 3 + ε i i = 1, 2, ..., 9

is fitted to data taken from Maindonald (1984, pp. 203–204).

RM, x, 9, 3

; Set up the data. 

 row 0:  7   5   6 

 row 1:  2  -1   6 

 row 2:  7   3   5 

 row 3: -3   1   4 

 row 4:  2  -1   0 

 row 5:  2   1   7 

 row 6: -3  -1   3 

 row 7:  2   1   1 

 row 8:  2   1   4 

 y = [7, -5, 6, 5, 5, -2, 0, 8, 3] 

; Call MULTIREGRESS to compute the coefficients. 

 coefs = MULTIREGRESS(x, y) 

; Output the results. 

 PM, coefs, $
Title = ’Least-Squares Coefficients’, $
Format = ’(f10.5)’ 

 Least-Squares Coefficients 

 7.73333 

 -0.20000 

 2.33333 

 -1.66667
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Example 2: Weighted Least-squares Fit

A weighted least-squares fit is computed using the model

yi = β0 + β1x i 1 + β2x i 2 + εi i = 1, 2, ..., 4

and weights 1/ i2 discussed by Maindonald (1984, pp. 67–68). 

In the example, Weights is specified. The minimum sum of squares for error in 
terms of the original untransformed regressors and responses for this weighted 
regression is

where wi = 1 / i2, represented in the C code as array w.

First, a procedure is defined to output the results, including the analysis of vari-
ance statistics.

PRO print_results, Coefs, Anova_Table 

coef_labels = ["intercept", "linear", $

"quadratic"] 

PM, coef_labels, coefs, Title = $
"Least-Squares Polynomial Coefficients",$
Format = ’(3a20, /,3f20.4, // )’ 

anova_labels = $
["degrees of freedom for regression", $
"degrees of freedom for error", $
"total (corrected) degrees of freedom", $
"sum of squares for regression", $
"sum of squares for error", $
"total (corrected) sum of squares", $
"regression mean square", $
"error mean square", "F-statistic", $
"p-value", "R-squared (in percent)", $
"adjusted R-squared (in percent)", $
"est. standard deviation of model error", $
"overall mean of y", $
"coefficient of variation (in percent)"] 

PM, ’* * * Analysis of Variance * * * ’, $
Format = ’(a50, /)’ 

FOR i = 0, 14 DO PM, anova_labels(i), $
anova_table(i), Format = ’(a40, f20.2)’ 

END

SSE wi yi ŷi–( )2

4

∑=
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RM, x, 4, 2

; Input the values for x. 

row 0: -2 0 

row 1: -1 2 

row 2:  2 5 

row 3:  7 3 

y = [-3.0, 1.0, 2.0, 6.0] 

; Define the dependent variables. 

weights = FLTARR(4)

FOR i = 0, 3 DO weights(i) = 1/((i + 1.0)^2) 

; Define the weights and print them. 

PM, weights 

1.00000 

0.250000 

0.111111 

0.0625000 

coefs = MULTIREGRESS(x, y, Weights = weights,$

Anova_Table = anova_table) 

print_results, coefs, anova_table 

; Print results using the procedure defined above. 

Least-Squares Polynomial Coefficients 

 intercept              linear           quadratic 

 -1.4307              0.6581              0.7485 

 * * * Analysis of Variance * * * 

 degrees of freedom for regression 2.00

 degrees of freedom for error 1.00

 total (corrected) degrees of freedom 3.00

 sum of squares for regression 7.68

 sum of squares for error 1.01

 total (corrected) sum of squares 8.69

 regression mean square 3.84

 error mean square 1.01

 F-statistic 3.79

 p-value 0.34

 R-squared (in percent) 88.34

 adjusted R-squared (in percent) 65.03

est. standard deviation of model error  1.01

 overall mean of y -1.51

 coefficient of variation (in percent) -66.55
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Example 3: Plotting Results

This example uses MULTIREGRESS to fit data with both simple linear regres-
sion and second order regression. The results are plotted along with confidence 
bands and residual plots.

PRO MULTIREGRESS_ex 

!P.Multi = [0, 2, 2] 

x = [1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0,$

5.0, 5.0] 

y = [1.1, 0.1, -1.2, 0.3, 1.4, 2.6, 3.1, 4.2, 9.3, 9.6] 

z = FINDGEN(120)/20 

line = MAKE_ARRAY(120, Value = 0.0) 

; Perform a simple linear regression. 

Coefs = MULTIREGRESS(x, y, $

Predict_Info = predict_info) 

y_hat = MULTIPREDICT(predict_info, x, Residual = residual, Y = 
y) 

y_hat = MULTIPREDICT(predict_info, z, Ci_Ptw_New_Samp = ci) 

PLOT, x, y, $

Title = ’Simple linear regression’, Psym = 4, XRange = [0.0, 
6.0] 

; Plot the regression. 

y2 = coefs(0) + coefs(1) * z 

OPLOT, z, y2 

OPLOT, z, ci(0, *), Linestyle = 1 

OPLOT, z, ci(1, *), Linestyle = 1 

PLOT, x, residual, psym = 4, Title = $

’Residual plot for simple linear ’ + ’regression’, $

XRange = [0.0, 6.0], YRange = [-6, 6] 

; Plot the residual. 

OPLOT, z, line 

x2 = [[x], [x * x]] 

; Compute the second-order regression. 

coefs = MULTIREGRESS(x2, y, Predict_Info = predict_info) 

y_hat = MULTIPREDICT(predict_info, x2, Residual = residual, Y = 
y) 

 y_hat = MULTIPREDICT(predict_info, $

[[z], [z * z]], Ci_Ptw_New_Sample = ci) 
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PLOT, x, y, Title = ’2nd order regression’,$ 

Psym = 4, XRange = [0.0, 6.0]

; Plot the second-order regression. 

y2 = coefs(0) + coefs(1) * z + coefs(2) * z * z 

OPLOT, z, y2 

OPLOT, z, ci(0, *), Linestyle = 1 

OPLOT, z, ci(1, *), Linestyle = 1 

PLOT, x2, residual, Psym = 4, $

Title = $

’Residual plot for 2nd order regression’, $

XRange = [0.0, 6.0], YRange = [-6, 6] 

; Plot the residual. 

OPLOT, z, line 

END

Figure 2-1  Plots of fit with confidence bands and residuals.
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Example 4: Two-variable, Second-degree Fit

In this example, MULTIREGRESS is used to compute a two variable second-
degree fit to data.

PRO MULTIREGRESS_ex

; Define the data. 

x1 = FLTARR(10, 5) 

x1(*, 0) = [8.5, 8.9, 10.6, 10.2, 9.8, $

10.8, 11.6, 12.0, 12.5, 10.9] 

x1(*, 1) = [2, 3, 3, 20, 22, 20, 31, 32, 31, 28] 

x1(*, 2) = x1(*, 0) * x1(*, 1) 

x1(*, 3) = x1(*, 0) * x1(*, 0) 

x1(*, 4) = x1(*, 1) * x1(*, 1) 

y = [30.9, 32.7, 36.7, 41.9, 40.9, 42.9, $

 46.3, 47.6, 47.2, 44.0] 

nxgrid = 30

nygrid = 30 

; Setup vectors for surface plot. These will be (nxgrid x nygrid)
; elements each, evenly spaced over the range of the data
; in x1(*, 0)  and x1(*, 1). 

ax1 = min(x1(*, 0)) + (max(x1(*, 0)) - $
min(x1(*, 0))) * findgen(nxgrid)/$
(nxgrid - 1) 

ax2 = min(x1(*, 1)) + (max(x1(*, 1)) - $
min(x1(*, 1))) * FINDGEN(nxgrid)/$
(nxgrid - 1) 

coefs = MULTIREGRESS(x1, y, Residual = resid) 

; Compute regression coefficients. 

z = FLTARR(nxgrid, nygrid) 

; Create two-dimensional array of evaluations of the regression
; model at points in grid established by ax1 and ax2. 

FOR i = 0, nxgrid - 1 DO BEGIN 

FOR j = 0, nygrid-1 DO BEGIN 

z(i,j) = Coefs(0) $

+ Coefs(1) * ax1(i) + Coefs(2) * ax2(j) $

+ Coefs(3) * ax1(i) * ax2(j) $

+ Coefs(4) * ax1(i)^2 $

+ Coefs(5) * ax2(j)^2 

END

END

!P.Charsize = 2
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SURFACE, z, ax1, ax2, /Save, $
XTitle = "X1", YTitle = "X2" 

PLOTS, x1(*, 0), x1(*, 1), y, /T3d, $
Psym = 4, Symsize = 3 

XYOUTS, .3, .9, /Normal, $
"Two-Variable Second-Degree Fit" 

; Plot the results. 

END

Figure 2-2  Two-variable, second-degree fit.

Warning Errors

STAT_RANK_DEFICIENT — Model is not full rank. There is not a unique 
least-squares solution. 
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MULTIPREDICT Function 
Computes predicted values, confidence intervals, and diagnostics after fitting a 
regression model.

Usage

result = MULTIPREDICT(predict_info, x)

Input Parameters

predict_info — One-dimensional byte array containing information computed 
by MULTIREGRESS (page 77) and returned through keyword predict_info. The 
data contained in this array is in an encrypted format and should not be altered 
after it is returned by MULTIREGRESS.

x — Two-dimensional array containing the combinations of independent vari-
ables in each row for which calculations are to be performed.

Returned Value

result — One-dimensional array of length N_ELEMENTS (x(*, 0)) containing 
the predicted values.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array containing the weight for each row of x. The 
computed prediction interval uses SSE / (DFE * Weights (1)) for the estimated 
variance of a future response.

Default: Weights (*) = 1

Confidence — Confidence level for both two-sided interval estimates on the 
mean and for two-sided prediction intervals, in percent. Keyword Confidence 
must be in the range [0.0, 100.0). For one-sided intervals with confidence level, 
where 50.0 ≤ c < 100.0, set Confidence = 100.0 – 2.0 * (100.0 – c).

Default: Confidence = 95.0

Y — Array of length N_ELEMENTS (x(*, 0)) containing the observed 
responses.
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Output Keywords

Ci_Scheffe — Named variable into which the two-dimensional array of size 2 
by N_ELEMENTS (x(*, 0)) containing the Scheffé confidence intervals corre-
sponding to the rows of x is stored. Element Ci_Scheffe (0, i) contains the i-th 
lower confidence limit; Ci_Scheffe (1, i) contains the i-th upper confidence 
limit.

Ci_Ptw_Pop_Mean — Named variable into which the two-dimensional array of 
size 2 by N_ELEMENTS (x(*, 0)) containing the confidence intervals for two-
sided interval estimates of the means, corresponding to the rows of x, is stored. 
Element Ci_Ptw_Pop_Mean (0, i) contains the i-th lower confidence limit; 
Ci_Ptw_Pop_Mean (1, i) contains the i-th upper confidence limit.

Ci_Ptw_New_Samp — Named variable into which the two-dimensional array 
of size 2 by N_ELEMENTS (x(*, 0)) containing the confidence intervals for 
two-sided prediction intervals, corresponding to the rows of x, is stored. 
Element Ci_Ptw_New_Samp (0, i) contains the i-th lower confidence limit; 
Ci_Ptw_New_Samp (1, i) contains the i-th upper confidence limit. 

Leverage — Named variable into which the one-dimensional array of length 
N_ELEMENTS (x(*, 0)) containing the leverages is stored.

NOTE  Y must be specified if any of the following keywords are specified:

Residual — Named variable into which the one-dimensional array of length 
N_ELEMENTS (x(*, 0)) containing the residuals is stored.

Std_Residual — Named variable into which the one-dimensional array of 
length N_ELEMENTS (x(*, 0)) containing the standardized residuals is stored.

Del_Residual — Named variable into which the one-dimensional array of 
length N_ELEMENTS (x(*, 0)) containing the deleted residuals is stored.

Cooks_D — Named variable into which the one-dimensional array of length 
N_ELEMENTS (x(*, 0)) containing the Cook’s D statistics is stored.

Dffits — Named variable into which the one-dimensional array of length 
N_ELEMENTS (x(*, 0)) containing the DFFITS statistics is stored.

Discussion

The general linear model used by function MULTIPREDICT is

y = Xβ + ε
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where y is the n x 1 vector of responses, X is the n x p matrix of regressors, β is 
the p x 1 vector of regression coefficients, and ε is the n x 1 vector of errors 
whose elements are independently normally distributed with mean zero and the 
following variance:

 σ2 / wi

From a general linear model fit using the wi’s as the weights, function MULTI-
PREDICT computes confidence intervals and statistics for the individual cases 
that constitute the data set. Let xi be a column vector containing elements of the 
i-th row of X. Let W = diag(w1, w2, ..., wn). The leverage is defined as hi = (xT

i 
(XTWX)–) xiwi. Put D = diag(d1, d2, ..., dp) with dj = 1 if the j-th diagonal ele-
ment of R is positive and zero otherwise. The leverage is computed as hi = 
(aTDa)wi , where a is a solution to RTa = xi. The estimated variance of

 

is given by the following:

his
2 / wi, where s2 = SSE / DFE

The computation of the remainder of the case statistics follow easily from their 
definitions. See the chapter introduction for definitions of the case diagnostics. 

Informational errors can occur if the input matrix X is not consistent with the 
information from the fit (contained in predict_info), or if excess rounding has 
occurred. The warning error STAT_NONESTIMABLE arises when X contains a 
row not in the space spanned by the rows of R. An examination of the model 
that was fitted and the X for which diagnostics are to be computed is required in 
order to ensure that only linear combinations of the regression coefficients that 
can be estimated from the fitted model are specified in x. For further details, see 
the discussion of estimable functions given in Maindonald (1984, pp. 166–168) 
and Searle (1971, pp. 180–188).

Often predicted values and confidence intervals are desired for combinations of 
settings of the independent variables not used in computing the regression fit. 
This can be accomplished by defining a new data matrix. Since the information 
about the model fit is input in predict_info, it is not necessary to send in the 
data set used for the original calculation of the fit, i.e., only variable combina-
tions for which predictions are desired need be entered in x. 

ŷ xi
TB̂=
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Example 1

This example calls MULTIPREDICT to compute predicted values after calling 
MULTIREGRESS. 

x = MAKE_ARRAY(13, 4) 

; Define the data set. 

x(0, *) = [7, 26, 6, 60] 

x(1, *) = [1, 29, 15, 52] 

x(2, *) = [11, 56, 8, 20] 

x(3, *) = [11, 31, 8, 47] 

x(4, *) = [7, 52, 6, 33] 

x(5, *) = [11, 55, 9, 22] 

x(6, *) = [3, 71, 17, 6] 

x(7, *) = [1, 31, 22, 44] 

x(8, *) = [2, 54, 18, 22] 

x(9, *) = [21, 47, 4, 26] 

x(10, *) = [1, 40, 23, 34] 

x(11, *) = [11, 66, 9, 12] 

x(12, *) = [10, 68, 8, 12] 

y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, $
102.7, 72.5, 93.1, 115.9, 83.8, 113.3,$
109.4] 

coefs = MULTIREGRESS(x, y, $

Predict_Info = predict_info) 

; Call MULTIREGRESS to compute the fit. 

predicted = MULTIPREDICT(predict_info, x) 

; Call MULTIPREDICT to compute predicted values. 

PM, predicted, Title = "Predicted values"

; Output the predicted values. 

Predicted values 

 78.4952 

 72.7888 

 105.971 

 89.3271 

 95.6492 

 105.275 

 104.149 

 75.6750 

 91.7216 

 115.618 

 81.8090 



MULTIPREDICT Function  97

 112.327 

 111.694

Example 2

This example uses the same data set as the first example and also uses a num-
ber of keywords to retrieve additional information from MULTIPREDICT. First, 
a procedure is defined to print the results.

PRO print_results, anova_table, t_tests, y,$

 predicted, ci_scheffe, residual, dffits 

labels = ["df for among groups            ", $
"df for within groups           ", $
"total (corrected) df           ", $
"ss for among groups            ", $
"ss for within groups           ", $
"total (corrected) ss           ", $
"mean square among groups       ", $
"mean square within groups      ", $
"F-statistic                    ", $
"P-value                        ", $
"R-squared (in percent)         ", $
"adjusted R-squared (in percent)", $
"est. std of within group error ", $
"overall mean of y              ", $
"coef. of variation (in percent) "] 

PRINT, " * * Analysis of Variance * *" 

; Print the analysis of variance table. 

PM, [[labels], [STRING(anova_table, $
Format = ’(f11.4)’)]] 

PRINT 

PRINT, "Coefficient s.e.    t      p-value" 

PM, t_tests, Format = ’(f7.2, 4x, 3f7.2)’ 

PRINT 

PRINT, " observed predicted   lower" + $
"upper residual dffits" 

PM, [[y], [predicted], $
[transpose(ci_scheffe)], $
[residual], [dffits]], Format = ’(6f10.2)’ 

END

x = MAKE_ARRAY(13, 4)

; Define the data set. 

x(0, *) = [7, 26, 6, 60] 
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x(1, *) = [1, 29, 15, 52] 

x(2, *) = [11, 56, 8, 20] 

x(3, *) = [11, 31, 8, 47] 

x(4, *) = [7, 52, 6, 33] 

x(5, *) = [11, 55, 9, 22] 

x(6, *) = [3, 71, 17, 6] 

x(7, *) = [1, 31, 22, 44] 

x(8, *) = [2, 54, 18, 22] 

x(9, *) = [21, 47, 4, 26] 

x(10, *) = [1, 40, 23, 34] 

x(11, *) = [11, 66, 9, 12] 

x(12, *) = [10, 68, 8, 12] 

y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, $
102.7, 72.5, 93.1, 115.9, 83.8,113.3, $
109.4] 

coefs = MULTIREGRESS(x, y, $
Anova_Table    = anova_table, $
T_Tests        = t_tests,      $
Predict_Info   = predict_info, $
Residual       = residual) 

; Call MULTIREGRESS to compute the fit. 

predicted = MULTIPREDICT(predict_info, x,  $
Ci_scheffe = ci_scheffe, $
Y          = y,          $
Dffits     = dffits) 

; Call MULTIPREDICT. 

print_results, anova_table, t_tests, y, $
predicted, ci_scheffe, residual, dffits 

; Print the results. 

* * Analysis of Variance * * 

 df for among groups                  4.0000 

 df for within groups                 8.0000 

 total (corrected) df                12.0000 

 ss for among groups               2667.8997 

 ss for within groups                47.8637 

 total (corrected) ss              2715.7634 

 mean square among groups           666.9749 

 mean square within groups            5.9830 

 F-statistic                        111.4791 

 P-value                              0.0000 

 R-squared (in percent)              98.2376 

 adjusted R-squared (in percent)     97.3563 
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 est. std of within group error       2.4460 

 overall mean of y                   95.4231 

 coef. of variation (in percent)      2.5633 

 Coefficient  s.e.    t     p-value 

   62.41      70.07   0.89   0.40 

    1.55       0.74   2.08   0.07 

    0.51       0.72   0.70   0.50 

    0.10       0.75   0.14   0.90 

   -0.14       0.71  -0.20   0.84 

observed  predicted    lower    upper   residual  dffits

      78.50     78.50     70.70     86.29      0.00      
0.00

      74.30     72.79     66.73     78.85      1.51      
0.52

     104.30    105.97     97.99    113.95     -1.67     -1.24

      87.60     89.33     83.62     95.03     -1.73     -
0.53

      95.90     95.65     89.37    101.93      0.25      
0.09

     109.20    105.27    101.57    108.98      3.93      
0.76

     102.70    104.15     97.79    110.51     -1.45     -0.55

      72.50     75.67     68.96     82.39     -3.17     -
1.64

      93.10     91.72     86.02     97.42      1.38      
0.42

     115.90    115.62    106.83    124.41      0.28      
0.30

      83.80     81.81     74.96     88.66      1.99      
0.93

     113.30    112.33    106.94    117.71      0.97      
0.26

     109.40    111.69    105.91    117.48     -2.29     -0.76

Warning Errors

STAT_NONESTIMABLE — Within the preset tolerance, the linear combination 
of regression coefficients is nonestimable.

STAT_LEVERAGE_GT_1 — Leverage (= #) much greater than 1.0 is com-
puted. It is set to 1.0.

STAT_DEL_MSE_LT_0 — Deleted residual mean square (= #) much less 
than zero is computed. It is set to zero.
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Fatal Errors

STAT_NONNEG_WEIGHT_REQUEST_2 — Weight for row # was #. Weights 
must be nonnegative.

ALLBEST Procedure 
Selects the best multiple linear regression models.

Usage

ALLBEST, x, y

Input Parameters

x — Two-dimensional array containing the data for the candidate variables.

y — One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the 
responses for the dependent variable.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array of length N_ELEMENTS (x(*, 0)) contain-
ing the weight for each row of x.

Default: Weights(*) = 1

Frequencies — One-dimensional array of length N_ELEMENTS (x(*, 0)) con-
taining the frequency for each row of x.

Default: Frequencies (*) = 1

Max_Subset — The R2 criterion is used, where subset sizes 
1, 2, ..., Max_Subset are examined. This option is the default with 
Max_Subset = N_ELEMENTS (x(0, *)). Keywords Max_Subset, 
Adj_R_Squared, and Mallows_Cp cannot be used together. 

Adj_R_Squared — The adjusted R2 criterion is used, where subset sizes 
1, 2, ..., N_ELEMENTS (x(*, 0)) are examined. Keywords Max_Subset, 
Adj_R_Squared, and Mallows_Cp cannot be used together. 
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Mallows_Cp — Mallows Cp criterion is used, where subset sizes 
1, 2, ..., N_ELEMENTS (x(*, 0)) are examined. Keywords Max_Subset, 
Adj_R_Squared, and Mallows_Cp cannot be used together. 

Max_N_Best — Number of best regressions to be found. If the R2 criterion is 
selected, the Max_N_Best best regressions for each subset size examined are 
found. If the adjusted R2 or Mallows Cp criterion is selected, the Max_N_Best 
overall regressions are found.

Default: Max_N_Best = 1

Max_N_Good — Maximum number of good regressions of each subset size to 
be saved in finding the best regressions. Keyword Max_N_Good must be 
greater than or equal to Max_N_Best. Normally, Max_N_Good should be less 
than or equal to 10. It need not ever be larger than the maximum number of 
subsets for any subset size. Computing time required is inversely related to 
Max_N_Good.

Default: Max_N_Good = 10

Cov_Nobs — Number of observations associated with array Cov_Input. Key-
words Cov_Input and Cov_Nobs must be used together.

Cov_Input — Two-dimensional square array of size 
(N_ELEMENTS (x(0, *)) + 1) by (N_ELEMENTS (x(0, *)) + 1) containing a 
variance-covariance or sum-of-squares and crossproducts matrix, in which the 
last column must correspond to the dependent variable. 

Array Cov_Input can be computed using function COVARIANCES. Parameters 
x and y, and keywords Frequencies and Weights are not accessed when this 
option is specified. Normally, ALLBEST computes Cov_Input from the input 
data matrices x and y. However, there may be cases when the user wants to cal-
culate the covariance matrix and manipulate it before calling ALLBEST. See 
the Discussion section for a discussion of such cases.

Keywords Cov_Input and Cov_Nobs must be used together.

Output Keywords

Idx_Criterions — Named variable into which the one-dimensional array of 
length NSIZE containing the locations in Criterions of the first element for each 
subset size is stored. NSIZE is calculated as follows: NSIZE = (Max_Subset + 
1) if Max_Subset is set. NSIZE = (N_ELEMENTS (x(0, *)) + 1) otherwise. For 
i = 0, 1, ..., NSIZE – 2, element numbers Idx_Criterions(i), Idx_Criterions (i) + 
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1, ..., Idx_Criterions(i + 1) – 1 of Criterions correspond to the (i + 1)-st subset 
size. Keywords Criterions and Idx_Criterions must be used together.

Criterions — Named variable into which the one-dimensional array of length 
max(Idx_Criterions (NSIZE – 1), N_ELEMENTS (x(0, *)) containing in its first 
Idx_Criterions (NSIZE – 1) elements the criterion values for each subset con-
sidered, in increasing subset size order, is stored. Keywords Criterions and 
Idx_Criterions must be used together. 

Idx_Vars — Named variable into which the one-dimensional array of length 
NSIZE containing the locations in  Indep_Vars of the first element for each sub-
set size. NSIZE is calculated as follows: NSIZE = (Max_Subset + 1) if 
Max_Subset is set. NSIZE = (N_ELEMENTS(x(0, *)) + 1) otherwise. 
For i = 0, 1, ..., NSIZE – 2, element numbers Idx_Vars(i), Idx_Vars (i) + 1, ..., 
Idx_Vars (i + 1) – 1) of Indep_Vars correspond to the (i + 1)-st subset size. 
Keywords Indep_Vars and Idx_Vars must be used together.

Indep_Vars — Named variable into which the one-dimensional array of length 
Idx_Vars (NSIZE – 1) containing the variable numbers for each subset consid-
ered and in the same order as in Criterions is stored. Keywords Indep_Vars and 
Idx_Vars must be used together.

Idx_Coefs — Named variable into which the one-dimensional array of length 
NBEST + 1 containing the locations of Coefficients the first row of each of the 
best regressions is stored. Here, NTBEST is the total number of best regression 
found and is Max_Subset * Max_N_Best if Max_Subset is specified, 
Max_N_Best if either Mallows_Cp or Adj_R_Squared is specified, and 
Max_N_Best * (N_ELEMENTS (x(0, *))) otherwise. For i = 0, 1, ..., NTBEST, 
rows Idx_Coefs (i), Idx_Coefs(i) + 1, ..., Idx_Coefs (i + 1) – 1 of Coefs corre-
spond to the (i + 1)-st regression. Keywords Coefs and Idx_Coefs must be used 
together.

Coefs — Named variable into which the two-dimensional array of size 
(Idx_Coefs (NTBEST)) x 5 containing statistics relating to the regression coeffi-
cients of the best models is stored. Each row corresponds to a coefficient for a 
particular regression. The regressions are in order of increasing subset size. 
Within each subset size, the regressions are ordered so that the better regres-
sions appear first. The statistic in the columns are as follows (inferences are 
conditional on the selected model):

Column Description

0 variable number
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Keywords Coefs and Idx_Coefs must be used together.

Discussion

Procedure ALLBEST finds the best subset regressions for a regression problem 
with

n_candidate = (N_ELEMENTS (x (0, *)))

independent variables. Typically, the intercept is forced into all models and is 
not a candidate variable. In this case, a sum-of-squares and crossproducts matrix 
for the independent and dependent variables corrected for the mean is com-
puted internally. There may be cases when it is convenient for the user to 
calculate the matrix; see the description of the Cov_Input optional parameter.

“Best” is defined, on option, by one of the following three criteria:

•  R2 (in percent)

•  R2
a (adjusted R2 in percent)

Note that maximizing the criterion is equivalent to minimizing the residual 
mean square:

•  Mallows’ Cp statistic

1 coefficient estimate

2 estimated standard error of the estimate

3 t-statistic for the test that the coefficient is 0

4 p-value for the two-sided t test

Column Description

R2 100 1
SSEp

SST
------------– 

 =

Ra
2 100 1

n 1–
n p–
------------ 

  SSEp

SST
------------–=

SSEp

n p–( )
----------------
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Here, n is equal to the sum of the frequencies (or N_ELEMENTS(x (*, 0)) if 
Frequencies is not specified) and SST is the total sum of squares. SSEp is the 
error sum of squares in a model containing p regression parameters including β0 

(or p – 1 of the n_candidate candidate variables). Variable is the s2
n_candidate 

error mean square from the model with all n_candidate variables in the model. 
Hocking (1972) and Draper and Smith (1981, pp. 296–302) discuss these 
criteria.

Procedure ALLBEST is based on the algorithm of Furnival and Wilson (1974). 
This algorithm finds Max_N_Good candidate regressions for each possible sub-
set size. These regressions are used to identify a set of best regressions. In large 
problems, many regressions are not computed. They may be rejected without 
computation based on results for other subsets; this yields an efficient tech-
nique for considering all possible regressions.

There are cases when the user may wish to input the variance-covariance matrix 
rather than allow the procedure ALLBEST to calculate it. This can be accom-
plished using keyword Cov_Input. Three situations in which the user may want 
to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and 
crossproducts matrix for the independent and dependent variables is 
required. Keyword Cov_Nobs must be set to 1 greater than the number of 
observations. Form ATA, where A = [A, Y], to compute the raw sum-of-
squares and crossproducts matrix.

2. An intercept is to be a candidate variable. A raw (uncorrected) sum-of-
squares and crossproducts matrix for the constant regressor (= 1.0), inde-
pendent variables, and dependent variables is required for Cov_Input. In this 
case, Cov_Input contains one additional row and column corresponding to 
the constant regressor. This row/column contains the sum of squares and 
crossproducts of the constant regressor with the independent and dependent 
variables. The remaining elements in Cov_Input are the same as in the pre-
vious case. Keyword Cov_Nobs must be set to 1 greater than the number of 
observations.

3. There are m variables to be forced into the models. A sum-of-squares and 
crossproducts matrix adjusted for the m variables is required (calculated by 
regressing the candidate variables on the variables to be forced into the 
model). Keyword Cov_Nobs must be set to m less than the number of 
observations. 

Cp

SSEp

sn_candidate
2

--------------------- 2p n–+=



ALLBEST Procedure  105

Programming Notes

Procedure ALLBEST saves considerable CPU time over explicitly computing 
all possible regressions. However, the procedure has some limitations that can 
cause unexpected results for users who are unaware of the limitations of the 
software.

1. For n_candidate + 1 > –log2(ε), where ε is machine precision, some results 
may be incorrect. This limitation arises because the possible models indi-
cated (the model numbers 1, 2, ..., 2n_candidate ) are stored as floating-point 
values; for sufficiently large n_candidate, the model numbers cannot be 
stored exactly. On many computers, this means ALLBEST (for n_candidate 
> 24; single precision) and ALLBEST (for n_candidate > 49; double preci-
sion) can produce incorrect results.

2. Procedure ALLBEST eliminates some subsets of candidate variables by 
obtaining lower bounds on the error sum of squares from fitting larger mod-
els. First, the full model containing all n_candidate is fit sequentially using 
a forward stepwise procedure in which one variable enters the model at a 
time, and criterion values and model numbers for all the candidate vari-
ables that can enter at each step are stored. If linearly dependent variables 
are removed from the full model, error STAT_VARIABLES_DELETED is 
issued. If this error is issued, some submodels that contain variables 
removed from the full model because of linear dependency can be over-
looked if they have not already been identified during the initial forward 
stepwise procedure. If error STAT_VARIABLES_DELETED is issued and 
the user wants the variables that were removed from the full model to be 
considered in smaller models, rerun the program with a set of linearly inde-
pendent variables.

Example

This example uses a data set from Draper and Smith (1981, pp. 629-630). The 
ALLBEST procedure is used to find the best regression for each subset size 
using the Mallow’s Cp statistic as the criterion. Note that when Mallow’s Cp 
statistic (or adjusted R2) is specified, the variable Max_N_Best indicates the 
total number of “best” regressions (rather than indicating the number of best 
regressions per subset size, as in the case of the R2 criterion). In this example, 
the three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3). 

PRO ALLBEST_ex1

; Define the data set. 

x = transpose( [ $
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[7., 26., 6., 60.], $

[1., 29., 15., 52.], $

[11., 56., 8., 20.], $

[11., 31., 8., 47.], $

[7., 52., 6., 33.], $

[11., 55., 9., 22.], $

[3., 71., 17., 6.], $

[1., 31., 22., 44.], $

[2., 54., 18., 22.], $

[21., 47., 4., 26.], $

[1., 40., 23., 34.], $

[11., 66., 9., 12.], $

[10., 68., 8., 12.]]) 

y = [78.5, 74.3, 104.3, 87.6, 95.9, $

109.2, 102.7, 72.5, 93.1, 115.9, $

83.8, 113.3, 109.4] 

Max_N_Best = 3 

ALLBEST, x, y, $

Max_N_Best = max_n_best, $

/Mallows_Cp, $

Idx_Coefs = idx_coefs, $

Coefs = coefs 

PRINT, "          * * * Idx_Coefs and Coefs ", $

"in raw form * * *" 

; First, the two important matrices, Idx_Coefs and Coefs, are
; printed to display how they appear as output from ALLBEST. 

PRINT 

PM, idx_coefs, Title = "Idx_Coefs:" 

PRINT 

PM, Coefs, Title = "Coefs" 

PRINT 

ntbest = max_n_best 

; Next, describe how Coefs is to be broken apart by regressions
; based on values of Idx_Coefs. Note: NTBEST is defined under the
; description of keyword Idx_Coefs. 

PRINT, "             * * * How Idx_Coefs ", $

"describes Coefs * * *" 

PRINT 

FOR i = 0, ntbest - 1 DO $

PRINT, "regression", i+1, $
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" begins at row ", Idx_Coefs(i), $

" of Coefs.", Format = ’(a, i2, a, i2, a)’ 

PRINT   

PRINT, "* * * Coefs separated by ", "regressions * * *" 

; Next, Coefs is broken apart by regressions, using Idx_Coefs.
; Note: The final element of Idx_Coefs is not a row number but
; instead is equal to the total number of rows in Coefs. 

PRINT 

FOR i = 0, ntbest - 1 DO begin 

start = idx_coefs(i) 

stop = idx_coefs(i + 1) - 1 

FOR j = start, stop DO begin 

PRINT, coefs(j, *), Format = ’(5f9.4)’ 

END 

PRINT 

END 

PRINT, "  * * * Best Regressions* * *" 

     ; Finally, regression labels, column labels, etc., are added. 

PRINT 

FOR i = 0, ntbest - 1 DO begin 
start = idx_coefs(i)
stop = idx_coefs(i + 1) - 1
count = stop - start + 1 

PRINT, "Best Regression with", count, $
"variables(s) (Mallows CP)", $
Format = ’(a, i2, a)’ 

PRINT, "variable   coefficient std " + $
"error    t  p-value" 

FOR j = start, stop DO $

PRINT, coefs(j, *), $
Format = ’(i5, 2x, 4f11.4)’

PRINT 

END 

END

* * * Idx_Coefs and Coefs in raw form * * * 

PM, Idx_Coefs 

            0 

            2 

            5 

            8 
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PM, Coefs 

       1.00000      1.46831     0.121301      12.1046  
2.38419e-07 

       2.00000     0.662251    0.0458547      14.4424      
0.00000 

       1.00000      1.45194     0.116998      12.4099  
5.96046e-07 

       2.00000     0.416112     0.185611      2.24185    
0.0516866 

       4.00000    -0.236538     0.173288     -1.36500     
0.205401 

       1.00000      1.69589     0.204582      8.28953  
1.66893e-05 

       2.00000     0.656915    0.0442343      14.8508  
1.19209e-07 

       3.00000     0.250018     0.184711      1.35356     
0.208889 

* * * How Idx_Coefs describes Coefs * * * 

regression 1 begins at row  0 of Coefs. 

regression 2 begins at row  2 of Coefs. 

regression 3 begins at row  5 of Coefs. 

* * * Coefs separated by regressions * * * 

1.0000   1.4683   0.1213  12.1046   0.0000

2.0000   0.6623   0.0459  14.4424   0.0000 

1.0000   1.4519   0.1170  12.4099   0.0000 

2.0000   0.4161   0.1856   2.2419   0.0517 

4.0000  -0.2365   0.1733  -1.3650   0.2054 

1.0000   1.6959   0.2046   8.2895   0.0000 

2.0000   0.6569   0.0442  14.8508   0.0000 

3.0000   0.2500   0.1847   1.3536   0.2089 

* * * Best Regressions* * * 

Best Regression with 2 variables(s)  (Mallows CP) 

variable coefficient std error    t       p-value

     1       1.4683     0.1213    12.1046    0.0000 

     2       0.6623     0.0459    14.4424    0.0000 

Best Regression with 3 variables(s)  (Mallows CP) 

variable coefficient std error    t       p-value

     1       1.4519     0.1170    12.4099    0.0000 

     2       0.4161     0.1856     2.2419    0.0517 
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     4      -0.2365     0.1733    -1.3650    0.2054 

Best Regression with 3 variables(s) Mallows CP) 

variable coefficient std error  t p-value

    1       1.6959    0.2046 8.2895  0.0000

    2       0.6569    0.0442   14.8508 0.0000

    3  0.2500    0.1847    1.3536 0.2089

Warning Errors

STAT_VARIABLES_DELETED — At least one variable is deleted from the 
full model because the variance-covariance matrix Cov is singular.

Fatal Errors

STAT_NO_VARIABLES — No variables can enter any model.

STEPWISE Procedure 
Builds multiple linear regression models using forward, backward, or stepwise 
selection.

Usage

STEPWISE, x, y

Input Parameters

x — Two-dimensional array containing the data for the candidate variables.

y — Array of length N_ELEMENTS(x(*, 0)) containing the responses for the 
dependent variable.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array containing the weight for each row of x.

Default: Weights (*) = 1

Frequencies — One-dimensional array containing the frequency for each row 
of x.
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Default: Frequencies (*) = 1

First_Step or
Inter_Step or
Last_Step or
All_Steps — One or none of these options can be specified. If none of these is 
specified, the action defaults to All_Steps.

 

N_Steps — For nonnegative N_Steps, N_Steps steps are taken. If N_STEPS = –
1, stepping continues until completion.

Default: N_STEPS = 1 

Keyword N_Steps is not referenced if All_Steps is used.

Forward or
Backward or
Stepwise — One or none of these options can be specified. If none is specified, 
the action defaults to Backward.

Keyword Action

First_Step This is the first invocation; additional calls will be made. 
Initialization and stepping is performed.

Inter_Step This is an intermediate invocation. Stepping is performed.

Last_Step This is the final invocation. Stepping and wrap-up compu-
tations are performed.

All_Steps This is the only invocation. Initialization, stepping, and 
wrap-up computations are performed.

Keyword Action

Forward An attempt is made to add a variable to the model. A 
variable is added if its p-value is less than P_In. During 
initialization, only the forced variables enter the model.

Backward An attempt is made to remove a variable from the model. 
A variable is removed if its p-value exceeds P_Out. Dur-
ing initialization, all candidate independent variables enter 
the model.
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P_In — Largest p-value for variable entering the model. Variables with p-val-
ues less than P_In may enter the model.

Default: P_In = 0.05

P_Out — Smallest p-value for removing variables with p-values greater than 
P_Out may leave the model. Keyword P_Out must be greater than or equal to 
P_In. A common choice for P_Out is 2*P_In.

Default: P_Out = 0.10

Tolerance — Tolerance used in determining linear dependence.

Default: Tolerance = 100*ε, where ε is machine precision.

Level — Array of length N_ELEMENTS(x(0, *)) + 1 containing levels of prior-
ity for variables entering and leaving the regression. Each variable is assigned a 
positive value that indicates its level of entry into the model. A variable can 
enter the model only after all variables with smaller nonzero levels of entry 
have entered. Similarly, a variable can only leave the model after all variables 
with higher levels of entry have left. Variables with the same level of entry 
compete for entry (deletion) at each step.
Level(i) = 0 means the i-th variable is never to enter the model. 
Level(i) = –1 means the i-th variable is the dependent variable. 
Level (N_ELEMENTS(x(0, *))) must correspond to the dependent variable, 
except when Cov_Input is specified.

Default: 1, 1, ..., 1, –1, where –1 corresponds to 
Level (N_ELEMENTS(x(0, *))) 

Force — Scalar integer specifying how variables are forced into the model as 
independent variables. Variable with levels 1, 2, ..., Force are forced into the 
model as independent variables. See Level.

Cov_Nobs — The number of observations associated with array Cov_Input. 
Keywords Cov_Input and Cov_Nobs must be used together.

Cov_Input — Two-dimensional square array of size (N_ELEMENTS(x(0,*)) + 
1) x (N_ELEMENTS(x(0,*)) + 1) containing a variance-covariance or sum-of-

Stepwise A backward step is attempted. If a variable is not 
removed, a forward step is attempted. This is a stepwise 
step. Only the forced variables enter the model during 
initialization.

Keyword Action
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squares and crossproducts matrix, in which the last column must correspond to 
the dependent variable.

Array Cov_Input can be computed using function COVARIANCES. Parameters 
x and y, and keywords Frequencies and Weights are not accessed when this 
option is specified. Normally, ALLBEST computes Cov_Input from the input 
data matrices x and y. However, there may be cases when the user wants to cal-
culate the covariance matrix and manipulate it before calling ALLBEST. See 
the Discussion section for a discussion of such cases. 

Keywords Cov_Input and Cov_Nobs must be used together.

Output Keywords

Anova_Table — Named variable into which the one-dimensional array contain-
ing the analysis of variance table is stored. The analysis of variance statistics 
are as follows: 

Coef_T_Tests — Named variable into which the two-dimensional array contain-
ing statistics relating to the regression coefficient for the final model in this 

Element Analysis of Variance Statistic

0 degrees of freedom for regression

1 degrees of freedom for error

2 total degrees of freedom

3 sum of squares for regression

4 sum of squares for error

5 total sum of squares

6 regression mean square

7 error mean square

8 F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation
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invocationing is stored. The rows correspond to the N_ELEMENTS(x(0, *)) in 
dependent variables. The rows are in the same order as the variables in x (or, if 
Cov_Input is specified, the rows are in the same order as the variables in 
Cov_Input). Each row corresponding to a variable not in the model contains sta-
tistics for a model which includes the variables of the final model and the 
variable corresponding to the row in question.

Coef_Vif — Named variable into which the two-dimensional array containing 
variance inflation factors for the final model in this invocation is stored. The 
elements correspond to the N_ELEMENTS (x(0, *)) in dependent variables. The 
elements are in the same order as the variables in x (or, if Cov_Input is speci-
fied, the elements are in the same order as the variables in Cov_Input). Each 
element corresponding to a variable not in the model contains statistics for a 
model which includes the variables of the final model and the variables corre-
sponding to the element in question.

The square of the multiple correlation coefficient for the i-th regressor after all 
others have been obtained from VIF = Coef_Vif(i) by the following formula:

1.0 – (1.0 / VIF)

Iend — Named variable into which an integer which indicates whether addi-
tional steps are possible is stored.

Swept — Named variable into which the one-dimensional array of length 
(N_ELEMENTS(x(0, *)) + 1) with information to indicate the independent vari-
ables in the model is stored. Keyword Swept (N_ELEMENTS (x(0, *))) usually 
corresponds to the dependent variable (see Level).

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient 
estimate

2 t-statistic for the test that the coefficient is zero

3 p-value for the two-sided t test

Iend Meaning

0 Additional steps may be possible.

1 No additional steps are possible.
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History — Named variable into which the one-dimensional array of length 
N_ELEMENTS (x(0, *)) + 1 containing the recent history of the independent 
variables is stored. 

Element History(N_ELEMENTS (x(0, *))) usually corresponds to the dependent 
variable (see Level).

Cov_Swept — Named variable into which the two-dimensional array of size 
N_ELEMENTS (x(0, *)) + 1) x (N_ELEMENTS (x(0, *)) + 1)  that results after 
Cov_Swept has been swept on the columns corresponding to the variables in the 
model. The estimated variance-covariance matrix of the estimated regression 
coefficients in the final model can be obtained by extracting the rows and col-
umns of Cov_Swept corresponding to the independent variables in the final 
model and multiplying the elements of this matrix by Anova_Table(7). 

Discussion

Procedure STEPWISE builds a multiple linear regression model using forward, 
backward, or forward stepwise (with a backward glance) selection. Procedure 
STEPWISE is designed so the user can monitor, and perhaps change, the vari-
ables added (deleted) to (from) the model after each step. In this case, multiple 
calls to STEPWISE (using keywords First_Step, Inter_Step, or Last_Step) are 
made. Alternatively, STEPWISE can be invoked once (default, or specify key-
word All_Steps) in order to perform the stepping until a final model is selected.

Swept (i) Status of i-th variable.

–1 Variable i is not in model.

1 Variable i is in model.

History (i) Status of i-th Variable

0.0 Variable has never been added to model.

0.5 Variable was added into the model during 
initialization.

k > 0.0 Variable was added to the model during the 
k-th step.

k < 0.0 Variable was deleted from model during the 
k-th step.
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Levels of priority can be assigned to the candidate independent variables (use 
keyword Level). All variables with a priority level of 1 must enter the model 
before variables with a priority level of 2. Similarly, variables with a level of 2 
must enter before variables with a level of 3, etc. Variables also can be forced 
into the model (see keyword Force). Note that specifying keyword Force with-
out also specifying keyword Level results in all variables being forced into the 
model.

Typically, the intercept is forced into all models and is not a candidate variable. 
In this case, a sum-of-squares and crossproducts matrix for the independent and 
dependent variables corrected for the mean is used. Other possibilities are as 
follows:

•  The intercept is not in the model. A raw (uncorrected) sum-of-squares and 
crossproducts matrix for the independent and dependent variables is 
required as input in Cov_Input. Keyword Cov_Nobs must be set to 1 greater 
than the number of observations.

•  An intercept is to be a candidate variable. A raw (uncorrected) sum-of-
squares and crossproducts matrix for the constant regressor (=1), indepen-
dent and dependent variables are required for Cov_Input. In this case, 
Cov_Input contains one additional row and column corresponding to the 
constant regressor. This row/column contains the sum-of-squares and 
crossproducts of the constant regressor with the independent and dependent 
variables. The remaining elements in Cov_Input are the same as in the pre-
vious case. Keyword Cov_Nobs must be set to 1 greater than the number of 
observations.

The stepwise regression algorithm is due to Efroymson (1960). Procedure 
STEPWISE uses sweeps of the covariance matrix (input using keyword 
Cov_Input, if specified, or generated internally by default) to move variables in 
and out of the model (Hemmerle 1967, Chapter 3). The SWEEP operator dis-
cussed in Goodnight (1979) is used. A description of the stepwise algorithm 
also is given by Kennedy and Gentle (1980, pp. 335–340). The advantage of 
stepwise model building over all possible regression (see ALLBEST, page 100) 
is that it is less demanding computationally when the number of candidate inde-
pendent variables is very large. However, there is no guarantee that the model 
selected will be the best model (highest R2) for any subset size of independent 
variables.
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Example

This example uses a data set from Draper and Smith (1981, pp. 629-630). Back-
wards stepping is performed by default. First, a procedure to output the results 
is defined.

PRO print_results, anova_table, t, s

    ; Define some labels for anova_table. 

labels = ["df for regression              ", $

"df for error                   ", $

"total df                       ", $

"ss for regression              ", $

"ss for error                   ", $

"total ss                       ", $

"mean square for regression     ", $

"mean square error              ", $

"F-statistic                    ", $

"p-value                        ", $

"R-squared (in percent)         ", $

"adjusted R-squared (in percent)"]

PRINT 

PRINT, "       * * Analysis of Variance * *" 

    ; Print the table. 

FOR i = 0, 11 DO PRINT, labels(i), $

anova_table(i), Format = ’(a32,f8.2)’ 

PRINT 

PRINT, "* * Inference on Coefficients * *" 

PRINT, "            Estimate    s.e.       t" + $
"        prob>t     swept" 

PRINT,"$(a, 4f10.4)","variable 1",t(0,*),s(0)

PRINT,"$(a, 4f10.4)","variable 2",t(1,*),s(1)

PRINT,"$(a, 4f10.4)","variable 3",t(2,*),s(2)

PRINT,"$(a, 4f10.4)","variable 4",t(3,*),s(3)

END 

x = MAKE_ARRAY(13, 4)

; Define the data. 

x(0, *) = [7., 26., 6., 60.] 

x(1, *) = [1., 29., 15., 52.] 

x(2, *) = [11., 56., 8., 20.] 

x(3, *) = [11., 31., 8., 47.] 

x(4, *) = [7., 52., 6., 33.] 
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x(5, *) = [11., 55., 9., 22.] 

x(6, *) = [3., 71., 17., 6.] 

x(7, *) = [1., 31., 22., 44.] 

x(8, *) = [2., 54., 18., 22.] 

x(9, *) = [21., 47., 4., 26.] 

x(10, *) = [1., 40., 23., 34.] 

x(11, *) = [11., 66., 9., 12.] 

x(12, *) = [10., 68., 8., 12.] 

y = [78.5, 74.3, 104.3, 87.6, 95.9, $

109.2, 102.7, 72.5, 93.1, 115.9, $

83.8, 113.3, 109.4] 

STEPWISE, x, y, Anova_Table = anova_table, $

Coef_T_Tests = t, swept = s

; Backward stepwise regression. 

print_results, anova_table, t, s

; Print the analysis of variance table. 

* * Analysis of Variance * * 

 df for regression                  2.00 

 df for error                  10.00 

 total df                          12.00 

 ss for regression               2657.86 

 ss for error                      57.90 

 total ss                        2715.76 

 mean square for regression      1328.93 

 mean square error                  5.79 

 F-statistic                      229.50 

 P-value                            0.00 

 R-squared (in percent)            97.87 

 adjusted R-squared (in percent)   97.44 

* * Inference on Coefficients * *

            Estimate    s.e.       t        prob>t     
swept

variable 1    1.4683    0.1213   12.1046    0.0000        1.

variable 2    0.6623    0.0459   14.4423    0.0000        1.

variable 3    0.2500    0.1847    1.3536    0.2089       -1.

variable 4   -0.2365    0.1733   -1.3650    0.2054       -1.
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Warning Errors

STAT_LINEAR_DEPENDENCE_1 — Based on Tolerance = #, there are linear 
dependencies among the variables to be forced.

Fatal Errors

STAT_NO_VARIABLES_ENTERED — No variables entered the model. All 
elements of Anova_Table are set to NaN. 

POLYREGRESS Function 
Performs a polynomial least-squares regression.

Usage

result = POLYREGRESS(x, y, degree)

Input Parameters

x — One-dimensional array containing the independent variable.

y — One-dimensional array containing the dependent variable.

degree — Degree of the polynomial.

Returned Value

result — An array of size degree + 1 containing the coefficients of the fitted 
polynomial.

Input Keywords

Double — If present and nonzero, double precision is used.

Weight — Array containing the vector of weights for the observation. If this 
option is not specified, all observations have equal weights of 1.

Predict_Info — Named variable into which the one-dimensional byte array 
containing information needed by function POLYPREDICT is stored. The data 
contained in this array is in an encrypted format and should not be altered 
before it is used in subsequent calls to POLYPREDICT.



POLYREGRESS Function  119

Output Keywords

Ssq_Poly — Named variable into which the array containing the sequential sum 
of squares and other statistics are stored.

Elements (i, *) correspond to xi+1, i = 0, ..., (degree – 1), and the contents of the 
array are described as follows:

Ssq_Lof — Named variable into which the array containing the lack-of-fit sta-
tistics is stored.

Elements (i, *) correspond to x i+1, i = 0, ..., (degree – 1), and the contents of 
the array are described as follows:

XMean — Named variable into which the mean of x is stored.

XVariance — Named variable into which the variance of x is stored. 

Anova_Table — Named variable into which the array containing the analysis of 
variance table is stored.

The analysis of variance statistics are given as follows:

Element Description

 (i, 0) degrees of freedom

 (i, 1) sum of squares

 (i, 2) F-statistic

 (i, 3) p-value

Element Description

 (i, 0) degrees of freedom

 (i, 1) lack-of-fit sum of squares

 (i, 2) F-statistic for testing lack-of-fit for a polyno-
mial model of degree i

 (i, 3) p-value for the test

Element Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom
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Df_Pure_Error — Named variable into which the degrees of freedom for pure 
error is stored.

Ssq_Pure_Error — Named variable into which the sum of squares for pure 
error is stored.

Residual — Named variable into which the array containing the residuals is 
stored.

Discussion 

Function POLYREGRESS computes estimates of the regression coefficients in a 
polynomial (curvilinear) regression model. In addition to the computation of the 
fit, POLYREGRESS computes some summary statistics. Sequential sum of 
squares attributable to each power of the independent variable (returned by 
using Ssq_Poly) are computed. These are useful in assessing the importance of 
the higher order powers in the fit. Draper and Smith (1981, pp. 101–102) and 
Neter and Wasserman (1974, pp. 278–287) discuss the interpretation of the 
sequential sum of squares.

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Element Analysis of Variance Statistic
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The statistic R2 is the percentage of the sum of squares of y about its mean 
explained by the polynomial curve. Specifically,

where wi is the weight,

 

is the fitted y value at xi and

 

is the mean of y. This statistic is useful in assessing the overall fit of the curve 
to the data. R2 must be between 0% and 100%, inclusive. R2 = 100% indicates a 
perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed 
using orthogonal polynomials as the regressor variables. This reparameterization 
of the polynomial model in terms of orthogonal polynomials has the advantage 
that the loss of accuracy resulting from forming powers of the x-values is 
avoided. All results are returned to the user for the original model (power 
form).

Function POLYREGRESS is based on the algorithm of Forsythe (1957). A 
modification to Forsythe’s algorithm suggested by Shampine (1975) is used for 
computing the polynomial coefficients. A discussion of Forsythe’s algorithm 
and Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342–
347).

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, 
pp. 279–285). The data set contains the response variable y measuring coffee 
sales (in hundred gallons) and the number of self-service coffee dispensers. 
Responses for fourteen similar cafeterias are in the data set. A graph of the 
results also is given.

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7] 

y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, 841.4,$

R2
wi ŷi y–( )2∑
wi yi y–( )2∑

--------------------------------100%=

ŷi

y
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831.8, 854.7, 871.4] 

; Define the data vectors. 

coefs = POLYREGRESS(x, y, 2) 

PM, Coefs, Title = $

"Least-Squares Polynomial Coefficients" 

Least-Squares Polynomial Coefficients 

 503.346 

 78.9413 

 -3.96949 

x2 = 9 * FINDGEN(100)/99 - 1 

PLOT, x2, coefs(0) + coefs(1) * x2 + $

coefs(2) * x2^2 

OPLOT, x, y, Psym = 1

Figure 2-3  Plot of least-squares regression.

Example 2

This example is a continuation of the initial example. Here, a procedure is 
called and defined to output the coefficients and analysis of variance table.

PRO print_results, coefs, anova_table 

; The following procedure prints the coefficients and the analysis of
; variance table. 

coef_labels = ["intercept", "linear", $

"quadratic"] 

-2 0 2 4 6 8
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PM, coef_labels, coefs, Title = $

 "Least-Squares Polynomial Coefficients",$

 Format = ’(3a20, /,3f20.4, //)’ 

anova_labels = $

["degrees of freedom for regression", $

"degrees of freedom for error", $

"total (corrected) degrees of freedom", $

"sum of squares for regression", $

"sum of squares for error", $

"total (corrected) sum of squares", $

"regression mean square", $

"error mean square", "F-statistic", $

"p-value", "R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. standard deviation of model error", $

"overall mean of y", $

"coefficient of variation (in percent)"] 

FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), Format = ’(a40, f20.2)’ 

END 

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7] 

y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, 841.4,$

831.8, 854.7, 871.4] 

; Define the data vectors. 

Coefs = POLYREGRESS(x, y, 2, $

Anova_Table = anova_table) 

; Call POLYREGRESS with keyword Anova_Table. 

print_results, coefs, anova_table 

; Call the procedure defined above to output the results. 

Least-Squares Polynomial Coefficients 

 intercept              linear           quadratic 

 503.3459             78.9413             -3.9695 

* * * Analysis of Variance * * * 

degrees of freedom for regression  2.00

degrees of freedom for error  11.00 

total (corrected) degrees of freedom    13.00 

sum of squares for regression  225031.94 

sum of squares for error  710.55 
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total (corrected) sum of squares  225742.48 

regression mean square           112515.97 

error mean square               64.60 

F-statistic             1741.86 

p-value                0.00 

R-squared (in percent)              99.69 

adjusted R-squared (in percent)  99.63 

est. standard deviation of model error  8.04 

overall mean of y              710.99 

coefficient of variation (in percent)    1.13

Warning Errors

STAT_CONSTANT_YVALUES — The y values are constant. A zero order poly-
nomial is fit. High order coefficients are set to zero.

STAT_FEW_DISTINCT_XVALUES — There are too few distinct x values to 
fit the desired degree polynomial. High order coefficients are set to zero.

STAT_PERFECT_FIT — A perfect fit was obtained with a polynomial of 
degree less than degree. High order coefficients are set to zero.

Fatal Errors

STAT_NONNEG_WEIGHT_REQUEST_2 — All weights must be nonnegative.

STAT_ALL_OBSERVATIONS_MISSING — Each (x, y) point contains NaN. 
There are no valid data.

STAT_CONSTANT_XVALUES — The x values are constant.
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POLYPREDICT Function 
Computes predicted values, confidence intervals, and diagnostics after fitting a 
polynomial regression model.

Usage

result = POLYPREDICT(predict_info, x)

Input Parameters

predict_info — One-dimensional byte array containing information computed 
by function POLYREGRESS and returned through keyword Predict_Info. The 
data contained in this array is in an encrypted format and should not be altered 
after it is returned by POLYREGRESS.

x — One-dimensional array containing the values of the independent variable 
for which calculations are to be performed.

Returned Value

result — One-dimensional array containing the predicted values.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array containing the weight for each element of x. 
The computed prediction interval uses SSE / (DFE * Weights (i)) for the esti-
mated variance of a future response.

Default: Weights (*) = 1

Confidence — Confidence level for both two-sided interval estimates on the 
mean and for two-sided prediction intervals, in percent. Keyword Confidence 
must be in the range (0.0, 100.0). For one-sided intervals with confidence level, 
where 
50.0 ≤ c < 100.0, set Confidence = 100.0 – 2.0 * (100.0 – c).

Default: Confidence = 95.0

Y — Array of length N_ELEMENTS (x) containing the observed responses.
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Output Keywords

Ci_Scheffe — Named variable into which the two-dimensional array of size 2 
by N_ELEMENTS(x) containing the Scheffé confidence intervals, correspond-
ing to the rows of x, is stored. Element Ci_Scheffe (0, i) contains the i-th lower 
confidence limit; Ci_Scheffe(1, i) contains the i-th upper confidence limit.

Ci_Ptw_Pop_Mean — Named variable into which the two-dimensional array of 
size 2 by N_ELEMENTS(x) containing the confidence intervals for two-sided 
interval estimates of the means, corresponding to the elements of x, is stored. 
Element Ci_Ptw_Pop_Mean(0, i) contains the i-th lower confidence limit, 
Ci_Ptw_Pop_Mean (1, i) contains the i-th upper confidence limit.

Ci_Ptw_New_Samp — Named variable into which the two-dimensional array 
of size 2 by N_ELEMENTS(x) containing the confidence intervals for two-sided 
prediction intervals, corresponding to the elements of x, is stored. Element 
Ci_Ptw_New_Samp(0, i) contains the i-th lower confidence limit, 
Ci_Ptw_New_Samp(1, i) contains the i-th upper confidence limit. 

Leverage — Named variable into which the one-dimensional array of length 
N_ELEMENTS(x) containing the leverages is stored.

NOTE  Y must be specified if any of the following keywords are specified.

Residual — Named variable into which the one-dimensional array of length 
N_ELEMENTS(x) containing the residuals is stored.

Std_Residual — Named variable into which the one-dimensional array of 
length N_ELEMENTS(x) containing the standardized residuals is stored.

Del_Residual — Named variable into which the one-dimensional array of 
length N_ELEMENTS(x) containing the deleted residuals is stored.

Cooks_D — Named variable into which the one-dimensional array of length 
N_ELEMENTS(x) containing the Cook’s D statistics is stored.

Dffits — Named variable into which the one-dimensional array of length 
N_ELEMENTS(x) containing the DFFITS statistics is stored.

Discussion

Function POLYPREDICT assumes a polynomial model 

yi = β0 + β1xi + ..., βkx
k
i + εi i = 1, 2, ..., n
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where the observed values of the yi’s constitute the response, the xi’s are the set-
tings of the independent variable, the βj’s are the regression coefficients, and the 
εi’s are the errors that are independently distributed normal with mean zero and 
the following variance:

σ2 / wi

Given the results of a polynomial regression, fitted using orthogonal polynomi-
als and weights wi, function POLYPREDICT produces predicted values, 
residuals, confidence intervals, prediction intervals, and diagnostics for outliers 
and in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the 
independent variable not used in computing the regression fit. This is accom-
plished by simply using a different x matrix than was used for the fit when 
calling POLYPREDICT (function POLYREGRESS, page 118). 

Results from function POLYREGRESS, which produces the fit using orthogonal 
polynomials, are used for input by the array predict_info. The fitted model from 
POLYREGRESS is

where the zi’s are settings of the independent variable x scaled to the interval 
[–2, 2] and the pj (z)’s are the orthogonal polynomials. The XTX matrix for this 
model is a diagonal matrix with elements dj. The case statistics are easily com-
puted from this model and are equal to those from the original polynomial 
model with βj’s as the regression coefficients.

The leverage is computed as follows:

The estimated variance of

 

is given by the following:

ŷi α̂0 p0 zi( ) α̂1 p1 zi( ) ... α̂k pk zi( )+ + +=

hi wi dj
1– pj

2 zi( )

k

∑=

ŷi

his2

wi

---------
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The computation of the remainder of the case statistics follow easily from their 
definitions. See the chapter introduction for the definition of the 
case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of 
settings of the independent variables not used in computing the regression fit. 
This can be accomplished by defining a new data matrix. Since the information 
about the model fit is input in predict_info, it is not necessary to send in the 
data set used for the original calculation of the fit, i.e., only variable combina-
tions for which predictions are desired need be entered in x. 

Example 1

A polynomial model is fit to data using function POLYREGRESS (page 118), 
then POLYPREDICT is used to compute predicted values.

x = [0, 0, 1, 1, 2, 2, 4, $
4, 5, 5, 6, 6, 7, 7] 

y = [58, 48, 58, 57, 61, 67, 70, $
74, 77, 72, 81, 85, 84, 81] 

; Define the sample data set. 

degree = 3 

Coefs = POLYREGRESS(x, y, degree, $
Predict_Info = predict_info, $
x2 = 8 * FINDGEN(100)/99)

; Call POLYREGRESS using keyword Predict_Info. 

predicted = POLYPREDICT(predict_info, x2) 

; Call POLYPREDICT with Predict_Info. 

PLOT, x, y, Psym = 4

; Plot the results. 

OPLOT, x2, predicted
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Figure 2-4  Plot of original data with predicted values.

Example 2

A polynomial model is fit to the data discussed by Neter and Wasserman (1974, 
pp. 279-285). The data set contains the response variable y measuring coffee 
sales (in hundreds of gallons) and the number of self-service dispensers. 
Responses for 14 similar cafeterias are in the data set. First, a procedure is 
defined to print the ANOVA table.

PRO print_results, anova_table

; Define some labels for the anova table. 

labels = ["df for among groups     ", $

"df for within groups           ", $

"total (corrected) df           ", $

"ss for among groups            ", $

"ss for within groups           ", $

"total (corrected) ss           ", $

"mean square among groups       ", $

"mean square within groups      ", $

"F-statistic                    ", $

"P-value                        ", $

"R-squared (in percent)         ", $
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"adjusted R-squared (in percent)", $

"est. std of within group error ", $

"overall mean of y              ", $

"coef. of variation (in percent)"] 

PRINT, "       * * Analysis of Variance * *" 

; Print the analysis of variance table. 

FOR i = 0, 13 DO PRINT, labels(i), $

anova_table(i), Format = ’(a32,f10.2)’ 

END 

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7] 

y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, $

841.4, 831.8, 854.7, 871.4] 

degree = 2

coefs = POLYREGRESS(x, y, degree, $

Anova_Table    = anova_table, $

predict_info   = predict_info) 

; Call POLYREGRESS to compute the fit.      

predicted = POLYPREDICT(predict_info, x, $
Ci_Scheffe = ci_scheffe, $
Y = y, Dffits = dffits) 

; Call POLYPREDICT. 

PLOT, x, ci_scheffe(1, *), $

Yrange = [450, 900], Linestyle = 2 

; Plot the results; confidence bands are dashed lines. 

OPLOT, x, ci_scheffe(0, *), Linestyle = 2 

OPLOT, x, y, Psym = 4 

x2 = 7 * FINDGEN(100)/99 

OPLOT, x2, POLYPREDICT(predict_info, x2) 

print_results, anova_table 

; Print the ANOVA table. 

* * Analysis of Variance * * 

df for among groups                  2.00 

df for within groups                11.00 

total (corrected) df                13.00 

ss for among groups             225031.94 

ss for within groups               710.55 

total (corrected) ss            225742.48 

mean square among groups        112515.97 
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mean square within groups           64.60 

F-statistic                       1741.86 

P-value                              0.00 

R-squared (in percent)              99.69 

adjusted R-squared (in percent)     99.63 

est. std of within group error       8.04 

overall mean of y                  710.99

coef. of variation (in percent) 1.13

Figure 2-5  Predicted values with confidence bands.

Warning Errors

STAT_LEVERAGE_GT_1 — Leverage (= #) much greater than 1 is computed. 
It is set to 1.0.

STAT_DEL_MSE_LT_0 — Deleted residual mean square (= #) much less than 
zero is computed. It is set to zero.

Fatal Errors

STAT_NEG_WEIGHT — Keyword Weights(#) = #. Weights must be 
nonnegative.
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NONLINREGRESS Function 
Fits a nonlinear regression model.

Usage

result = NONLINREGRESS(fcn, n_parameters, x, y)

Input Parameters

fcn — Scalar string specifying the name of a user-supplied function to evaluate 
the function that defines the nonlinear regression problem. Function fcn accepts 
the following input parameters and returns a scalar float: 

•  x — One-dimensional array containing the point at which point the function 
is evaluated.

•  theta — One-dimensional array containing the current values of the regres-
sion coefficients.
Function fcn returns a predicted value at the point x. In the following, 
f(xi; θ), or just fi, denotes the value of this function at the point xi, for a 
given value of θ. (Both xi and θ are arrays.)

n_parameters — Number of parameters to be estimated.

x — Two-dimensional array containing the matrix of independent (explanatory) 
variables.

y — One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the 
dependent (response) variable.

Returned Value 

result — A one-dimensional array of length n_parameters containing a 
solution, 

, 

for the nonlinear regression coefficients.

Input Keywords

Double — If present and nonzero, double precision is used.

θ
ˆ
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Theta_Guess — Array with n_parameters components containing an initial 
guess.

Default: Theta_Guess(*) = 0

Jacobian — Scalar string specifying the name of a user-supplied function to 
compute the i-th row of the Jacobian. This function accepts the following 
parameters:

•  X — One-dimensional array of length N_ELEMENTS (x(0, *)) containing 
the data values corresponding to the i-th row.

•  Theta — One-dimensional array of length n_parameters containing the 
regression coefficients for which the Jacobian is evaluated.
The return value of this function is an array of length n_parameters con-
taining the computed n_parameters row of the Jacobian for observation i at 
Theta. Note that each derivative ∂f(xi) / ¹∂θj should be returned in element (j 
– 1) of the returned array for j = 1, 2, ..., n parameters.

Theta_Scale — One-dimensional array of length n_parameters containing the 
scaling array for θ. Keyword Theta_Scale is used mainly in scaling the gradi-
ent and the distance between two points. See keywords Grad_Eps and Step_Eps 
for more details.

Default: Theta_Scale(*) = 1

Grad_Eps — Scaled gradient tolerance. The j-th component of the scaled gradi-
ent at θ is calculated as

where , , and

. 

The value F(θ) is the vector of the residuals at the point θ.

Default: 

 (  in double), 

gj *max θ j 1 tj⁄,( )
1
2
--- F θ( ) 2

2
-----------------------------------------------

g F θ( )∇= t Theta_Scale=

F θ( ) 2

2
yi f xi θ;( )–( )2

i 1=

n∑=

Grad_Eps ε= ε3
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where ε is the machine precision

Step_Eps — Scaled step tolerance. The j-th component of the scaled step from 
points θ and θŠ′ is computed as

 

where t = Theta_Scale.

Default: Step_Eps = ε2 / 3, where ε is the machine precision

Sse_Rel_Eps — Relative SSE function tolerance.

Default: Sse_Rel_Eps = max(10–10, ε2 / 3), max (10–20, ε2 / 3) in double, 
where ε is the machine precision

Abs_Eps_Sse — Absolute SSE function tolerance.

Default: Abs_Eps_Sse = max(10 –20, ε2), max(10 –40, ε2) in double, where 
ε is the machine precision

Max_Step — Maximum allowable step size.

Default:

Max_Step = 1000 max(ε1, ε2), where ε1 = (tTθ0)1/2 , 

ε2 = ||t||2 , t = Theta_Scale, and θ0 = Theta_Guess 

Trust_Region — Size of initial trust region radius. The default is based on the 
initial scaled Cauchy step.

N_Digit — Number of good digits in the function.

Default: machine dependent

Itmax — Maximum number of iterations.

Default: Itmax = 100 

Max_Sse_Evals — Maximum number of SSE function evaluations.

Default: Max Sse Evals = 400

Max_Jac_Evals — Maximum number of Jacobian evaluations.

Default: Max Jac Evals = 400

Tolerance — False convergence tolerance.

θj θ j
′–

max θ j 1 tj⁄,( )
-----------------------------------
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Default: Tolerance = 100 * ε, where ε  is machine precision.

Output Keywords

Predicted — Named variable into which the one-dimensional array, containing 
the predicted values at the approximate solution, is stored.

Residual — Named variable into which the one-dimensional array, containing 
the residuals at the approximate solution, is stored.

R_Matrix — Named variable into which the two-dimensional array of size 
n_parameters x n_parameters, containing the R matrix from a QR decomposi-
tion of the Jacobian, is stored.

R_Rank — Named variable into which the rank of the R matrix is stored. A 
rank of less than n_parameters may indicate the model is overparameterized.

Df — Named variable into which the degrees of freedom is stored.

Sse — Named variable into which the residual sum of squares is stored.

Discussion

Function NONLINREGRESS fits a nonlinear regression model using least 
squares. The nonlinear regression model is

yi = f(xi;θ) + εi i = 1, 2, ..., n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the known xi’s are the vectors of the values of the indepen-
dent (explanatory) variables, θ is the vector of p regression parameters, and the 
εi’s are independently distributed normal errors with mean zero and variance σ2. 
For this model, a least-squares estimate of θ is also a maximum likelihood esti-
mate of θ.

The residuals for the model are as follows:

ei(θ) = yi – f(xi ; θ)  i = 1, 2, ..., n

A value of θ that minimizes

 

is a least-squares estimate of θ. Function NONLINREGRESS is designed so 
that the values of the function f(xi ; θ) are computed one at a time by a user-
supplied function.

Σi 1=
n

ei θ( )[ ]2
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Function NONLINREGRESS is based on MINPACK routines LMDIF and 
LMDER by Moré et al. (1980) that use a modified Levenberg-Marquardt 
method to generate a sequence of approximations to a minimum point. Let

 

be the current estimate of θ. A new estimate is given by

, 

where sc is a solution to the following:

Here,

 

is the Jacobian evaluated at

.

The algorithm uses a “trust region” approach with a step bound of δc. A solu-
tion is first obtained for µc = 0. If

, 

this update is accepted; otherwise, µc is set to a positive value and another solu-
tion is obtained. The method is discussed by Levenberg (1944), Marquardt 
(1963), and Dennis and Schnabel (1983, pp. 129–147, 218–338).

If a user-supplied function is specified in Jacobian, the Jacobian is computed 
analytically; otherwise, forward finite differences are used to estimate the Jaco-
bian numerically. In the latter case, especially if single precision is used, the 
estimate of the Jacobian may be so poor that the algorithm terminates at a non-
critical point. In such instances, the user should either supply a Jacobian 
function, use the Double keyword, or do both.

Programming Notes

Nonlinear regression allows substantial flexibility over linear regression because 
the user can specify the functional form of the model. This added flexibility can 
cause unexpected convergence problems for users who are unaware of the limi-

θˆ c
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tations of the software. Also, in many cases, there are possible remedies that 
may not be immediately obvious. The following is a list of possible conver-
gence problems and some remedies. There is no one-to-one correspondence 
between the problems and the remedies. Remedies for some problems also may 
be relevant for other problems.

•  A local minimum is found. Try a different starting value. Good starting val-
ues often can be obtained by fitting simpler models. For example, for a 
nonlinear function 

good starting values can be obtained from the estimated linear regression 
coefficients

 and  

from a simple linear regression of ln y on  x. The starting values for the 
nonlinear regression in this case would be

 and . 

If an approximate linear model is not clear, then simplify the model by 
reducing the number of nonlinear regression parameters. For example, some 
nonlinear parameters for which good starting values are known could be set 
to these values in order to simplify the model for computing starting values 
for the remaining parameters.

•  The estimate of θ is incorrectly returned as the same or very close to the 
initial estimate. This occurs often because of poor scaling of the problem, 
which might result in the residual sum of squares being either very large or 
very small relative to the precision of the computer. The keywords allow 
control of the scaling.

•  The model is discontinuous as a function of θ. (The function f(x;θ) can be a 
discontinuous function of x.)

•  Overflow occurs during the computations. Make sure the user-supplied 
functions do not overflow at some value of θ.

•  The estimate of θ is going to infinity. A parameterization of the problem in 
terms of reciprocals may help.

•  Some components of θ are outside known bounds. This can sometimes be 
handled by making a function that produces artificially large residuals out-

f x θ;( ) θ1eθ2x=

βˆ 0 βˆ 1

θ1 e β̂0= θ2 βˆ 1=
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side of the bounds (even though this introduces a discontinuity in the model 
function).

Example 1

In this example (Draper and Smith 1981, p. 518), the following nonlinear model 
is fit:

.RUN 

- FUNCTION fcn, x, theta 

- RETURN, theta(0) + (0.49 - theta(0)) $

- *EXP(theta(1)*(x(0) - 8)) 

- END 

x = [10, 20, 30, 40] 

 y = [0.48, 0.42, 0.40, 0.39] 

 n_parameters = 2 

 theta_hat = NONLINREGRESS("fcn", n_parameters, x, y)

 PRINT, "Estimated Coefficients:", theta_hat 

 Estimated Coefficients:    
0.380714   -0.0794534

Example 2

Consider the nonlinear regression model and data set discussed by Neter et al. 
(1983, pp. 475–478):

There are two parameters and one independent variable. The data set considered 
consists of 15 observations.

FUNCTION fcn, x, theta 

; Define the function that defines the nonlinear regression problem. 

RETURN, theta(0) * EXP(x(0) * theta(1)) 

END 

FUNCTION jac, x, theta

; Define the Jacobian function. 

fjac = theta

; The following assignment produces an array of the correct size to

Y α 0.49 α–( )e β X 8–( )– ε++=

yi θ1eθ2xi εi+=
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; use as the return value of the Jacobian. 

fjac(0) = -exp(theta(1) * x(0)) 

fjac(1) = -theta(0) * x(0) * EXP(theta(1) $

* x(0))

RETURN, fjac 

; Compute the Jacobian. 

END 

PRO nlnreg_ex

; Define x and y. 

x = [2, 5, 7, 10, 14, 19, 26, 31, 34, 38, $

45, 52, 53, 60, 65] 

y = [54, 50, 45, 37, 35, 25, 20, 16, 18, 13, $

8, 11, 8, 4, 6] 

theta_hat = NONLINREGRESS("fcn", 2, x, y, $
Theta_Guess = [60, -0.03], $
Grad_Eps = 0.001, Jacobian = "jac") 

; Call NONLINREGRESS. 

PLOT, x, y, Psym = 4, $

Title = ’Nonlinear Regression’ 

; Plot original data. 

xtmp = 80 * FINDGEN(200)/199

OPLOT, xtmp, theta_hat(0) * $
EXP(xtmp * theta_hat(1)) 

; Plot regression. 

END



140  Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Figure 2-6  Plot of original data and the nonlinear regression fit.

Informational Errors

STAT_STEP_TOLERANCE — Scaled step tolerance satisfied. The current point 
may be an approximate local solution, but it is also possible that the algorithm 
is making very slow progress and is not near a solution or that Step_Eps is too 
big.

Warning Errors

STAT_LITTLE_FCN_CHANGE — Both the actual and predicted relative 
reductions in the function are less than or equal to the relative function 
tolerance.

STAT_TOO_MANY_ITN — Maximum number of iterations exceeded.

STAT_TOO_MANY_FCN_EVAL — Maximum number of function evaluations 
exceeded.

STAT_TOO_MANY_JACOBIAN_EVAL — Maximum number of Jacobian eval-
uations exceeded.

STAT_UNBOUNDED — Five consecutive steps have been taken with the maxi-
mum step length.
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STAT_FALSE_CONVERGENCE — Iterates appear to be converging to a non-
critical point.

HYPOTH_PARTIAL Function 
Constructs an equivalent completely testable multivariate general linear hypoth-
esis HβU = G  from a partially testable hypothesis HpβU = Gp.

Usage

result = HYPOTH_PARTIAL(info_v, hp)

Input Parameters

info_v — One-dimensional array of type BYTE containing information about 
the regression fit. See function MULTIREGRESS.

hp —The Hp array of size nhp by n_coefficients with each row corresponding 
to a row in the hypothesis and containing the constants that specify a linear 
combination of the regression coefficients. Here, n_coefficients is the number of 
coefficients in the fitted regression model.

Returned Value 

result — Number of rows in the completely testable hypothesis, nh. This value 
is also the degrees of freedom for the hypothesis. The value nh classifies the 
hypothesis HpβU = Gp as nontestable (nh = 0), partially testable (0 < nh < 
Rank_Hp) or completely testable (0 < nh = Rank_Hp), where Rank_Hp is the 
rank of Hp (see keyword Rank_Hp).

Input Keywords

Double — If present and nonzero, double precision is used.

Gp — Two-dimensional array of size nhp by nu containing the Gp matrix, the 
null hypothesis values. By default, each value of Gp is equal to 0.

Output Keywords

Rank_Hp — Named variable into which the rank of Hp is stored.
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H_Matrix — Named variable into which a two-dimensional array of size nh by 
n_parameters containing the H matrix is stored. Each row of H_Matrix corre-
sponds to a row in the completely testable hypothesis and contains the constants 
that specify an estimable linear combination of the regression coefficients.

G_Matrix — Named variable into which a one-dimensional array of length nu 
containing the G matrix is stored. The elements of G_Matrix contain the null 
hypothesis values for the completely testable hypothesis.

Discussion

Once a general linear model y = Xβ + ε is fitted, particular hypothesis tests are 
frequently of interest. If the matrix of regressors X is not full rank (as evidenced 
by the fact that some diagonal elements of the R matrix output from the fit are 
equal to zero), methods that use the results of the fitted model to compute the 
hypothesis sum of squares (see function HYPOTH_SCPH, page 147) require 
specification in the hypothesis of only linear combinations of the regression 
parameters that are estimable. A linear combination of regression parameters 
cTβ is estimable if there exists some vector a such that cT = aTX, i.e., cT is in 
the space spanned by the rows of X. For a further discussion of estimable func-
tions, see Maindonald (1984, pp. 1661168) and Searle (1971, pp. 1802188). 
Function HYPOTH_PARTIAL is only useful in the case of non-full rank regres-
sion models, i.e., when the problem of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesis in the 
context of a general linear hypothesis test Hβ = g is overly restrictive. He 
extended the notion of a testable hypothesis (a hypothesis composed of estima-
ble functions of the regression parameters) to include partially testable and 
completely testable hypothesis. A hypothesis Hβ = g is partially testable if the 
intersection of the row space H (denoted by ℜ(H)) and the row space of X 
(ℜ(X)) is not essentially empty and is a proper subset of ℜ(H), i.e., {0} ⊂ℜ(H) 
∩ℜ(X) ⊂ℜ(H). A hypothesis Hβ = g is completely testable if {0} ⊂ℜ(H) 
∩ℜ(H) ⊂ ℜ(X). Peixoto also demonstrated a method for converting a partially 
testable hypothesis to one that is completely testable so that the usual method 
for obtaining sums of squares for the hypothesis from the results of the fitted 
model can be used. The method replaces Hp in the partially testable hypothesis 
Hpβ = gp by a matrix H whose rows are a basis for the intersection of the row 
space of Hp and the row space of X. A corresponding conversion of the null 
hypothesis values from gp to g is also made. A sum of squares for the com-
pletely testable hypothesis can then be computed (see function 
HYPOTH_SCPH). The sum of squares that is computed for the hypothesis Hβ 
= g equals the difference in the error sums of squares from two fitted models—
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the restricted model with the partially testable hypothesis Hpβ = gp and the 
unrestricted model.

For the general case of the multivariate model Y = Xβ + ε with possible linear 
equality restrictions on the regression parameters, HYPOTH_PARTIAL converts 
the partially testable hypothesis Hpβ = gp to a completely testable hypothesis 
HβU = G. For the case of the linear model with linear equality restrictions, the 
definitions of the estimable functions, nontestable hypothesis, partially testable 
hypothesis, and completely testable hypothesis are similar to those previously 
given for the unrestricted model with the exception that ℜ(X) is replaced by 
ℜ(R) where R is the upper triangular matrix based on the linear equality restric-
tions. The nonzero rows of R form a basis for the rowspace of the matrix (XT, 
AT)T. The rows of H form an orthonormal basis for the intersection of two sub-
spaces—the subspace spanned by the rows of Hp and the subspace spanned by 
the rows of R. The algorithm used for computing the intersection of these two 
subspaces is based on an algorithm for computing angles between linear sub-
spaces due to Björk and Golub (1973). (See also Golub and Van Loan 1983, pp. 
429430). The method is closely related to a canonical correlation analysis dis-
cussed by Kennedy and Gentle (1980, pp. 561565). The algorithm is as follows:

3. Compute a QR factorization of 

with column permutations so that

Here, P1 is the associated permutation matrix that is also an orthogonal 
matrix. Determine the rank of Hp as the number of nonzero diagonal ele-
ments of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is the 
first n1 column of Q1. Set Rank_Hp = n.

4. Compute a QR factorization of the transpose of the R matrix (input through 
info_v) with column permuations so that 

HP
T

H Q R PP
T T= 1 1 1

R Q R PT T= 2 2 2
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Determine the rank of R from the number of nonzero diagonal elements of R, 
for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2 columns of 
Q2.

5. Form

6. Compute the singular values of A

and the left singular vectors W of the singular value decomposition of A so 
that

If σ1 < 1, then the dimension of the intersection of the two subspaces is 
s = 0. Otherwise, assume the dimension of the intersection to be s if 
σs = 1 > σs+1. Set nh = s.

7. Let W1 be the first s columns of W. Set H = (Q1W1)T.

8. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If nhp < 
n_parameters, R11 equals the first nhp rows of R1. Otherwise, R11 contains 
R1 in its first n_parameters rows and zeros in the remaining rows. Compute 
a solution Z to the linear system

If this linear system is declared inconsistent, an error message with error 
code equal to 2 is issued.

A Q QT= 11 21

σ1 σ2 … σmin n1 n2,( )≥ ≥ ≥

WTAV σ1 …σmin n1 n2,( ),( )=

R Z P GT T
p11 1=
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9. Partition

so that Z1 is the first n1 rows of Z. Set

The degrees of freedom (nh) classify the hypothesis HpβU =Gp as nontest-
able (nh = 0), partially testable (0 < nh < Rank_Hp), or completely testable 
(0 < nh = Rank_Hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example

A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to 
data. The model is 

yii = µ + αi + εii (i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using function MULTIREGRESS (page 77). The partially 
testable hypothesis

is converted to a completely testable hypothesis.

nrows  =  3

n_indep  =  1

n_dep  =  1

n_param  =  3

Z Z ZT T T= 1 2,� �
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n_class  =  1

n_cont  =  0

nhp  =  2

z  =  [1, 2, 2]

y  =  [17.3, 24.1, 26.3]

gp  =  [5, 3]

hp  =  TRANSPOSE([[0, 1, 0], [0, 0, 1]])

x  =  REGRESSORS(z, n_class, n_cont)

size_x  =  SIZE(x)

nreg  =  size_x(2)

coefs  =  MULTIREGRESS(x, y, Predict_Info = info_v)

% MULTIREGRESS: Warning: STAT_RANK_DEFICIENT

    The model is not full rank.  There is not a unique least 

    squares solution. The rank of the matrix of regressors is 
2.

nh  =  HYPOTH_PARTIAL(info_v,  hp, Gp  =  gp, $

                      G_Matrix = g_matrix, H_Matrix = 
h_matrix, $

                      Rank_Hp = rank_hp)

IF (nh EQ 0) THEN PRINT, "Nontestable Hypothesis" $

  ELSE IF (nh LT rank_hp) THEN $

          PRINT,  "Partially Testable Hypothesis" $

  ELSE PRINT, "Completely Testable Hypothesis"

Partially Testable Hypothesis

PM,  h_matrix,  title  =  "H Matrix"

H Matrix

      0.00000     0.707107    -0.707107

PM,  g_matrix,  title  =  "G"

G

      1.41421

Warning Errors

STAT_HYP_NOT_CONSISTENT — The hypothesis is inconsistent within the 
computed tolerance.
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HYPOTH_SCPH Function 
Computes the matrix of sums of squares and crossproducts for the multivariate 
general linear hypothesis HβU = G given the regression fit. 

Usage

result = HYPOTH_SCPH(info_v, h)

Input Parameters

info_v — One-dimensional array of type BYTE containing information about 
the regression fit. See function MULTIREGRESS.

h — Two-dimensional array of size nh by n_coefficients with each row corre-
sponding to a row in the hypothesis and containing the constants that specify a 
linear combination of the regression coefficients. Here, n_coefficients is the 
number of coefficients in the fitted regression model.

Returned Value

result — Two-dimensional array, scph, containing the sums of squares and 
crossproducts attributable to the hypothesis.

Input Keywords

Double — If present and nonzero, double precision is used.

G — Two-dimensional array of size nh by nu containing the G matrix, the null 
hypothesis values. By default, each value of G is equal to 0.

U — Two-dimensional array of size n_dependent by nu containing the U matrix 
for the test HpβU = Gp where nu is the number of linear combinations of the 
dependent variables to be considered. The value nu must be greater than 0 and 
less than or equal to n_dependent.

Default: nu = n_dependent and U is the identity matrix

Output Keywords

Dfh — Named variable into which the degrees of freedom for the sums of 
squares and crossproducts matrix is stored. This is equal to the rank of input 
matrix h.
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Discussion

Function HYPOTH_SCPH computes the matrix of sums of squares and 
crossproducts for the general linear hypothesis HβU = G for the multivariate 
general linear model Y = Xβ + ε.

The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must 
be completely testable. If the hypothesis is not completely testable, function 
HYPOTH_PARTIAL (page 141) can be used to construct an equivalent com-
pletely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle 
(1980, p. 317) that is extended by Sallas and Lionti (1988) for mulitvariate non-
full rank models with possible linear equality restrictions. The algorithm is as 
follows:

1. Form 

2. Find C as the solution of RTC = HT. If the equations are declared inconsis-
tent within a computed tolerance, a warning error message is issued that the 
hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative 
diagonal elements from a restricted least-squares fit, zero out the corre-
sponding rows of C, i.e., from DC.

4. Decompose DC using Householder transformations and column pivoting to 
yield a square, upper triangular matrix T with diagonal elements of nonin-
creasing magnitude and permutation matrix P such that 

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of 
T is r if

W H U G= −$β

DCP Q
T

=
�
��

�
��0
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| trr | > | t11 | ε 1 | tr + 1, r + 1 |

where ε = 10.0 * (machine epsilon)  

Then, zero out all rows of T below r. Set the degrees of freedom for the 
hypothesis, Dfh, to r.

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a warn-
ing error message is issued that the hypothesis is inconsistent within a 
computed tolerance, i.e., the linear system

HβU = G

Ab = Z

does not have a solution for β.

Form VTV, which is the required matrix of sum of squares and crossprod-
ucts, scph.

In general, the two warning errors described above are serious user errors 
that require the user to correct the hypothesis before any meaningful sums 
of squares from this function can be computed. However, in some cases, the 
user may know the hypothesis is consistent and completely testable, but the 
checks in HYPOTH_SCPH are too tight. For this reason, HYPOTH_SCPH 
continues with the calculations.

Function HYPOTH_SCPH gives a matrix of sums of squares and 
crossproducts that could also be obtained from separate fittings of the two 
models:

Y≠ = Xβ≠ + ε≠ (1)

Aβ≠ = Z≠

Hβ≠ = G

and

Y≠ = Xβ≠ + ε≠ (2)

Aβ = Z≠

where Y≠ = YU, β≠ = βU, ε≠ = εU, and Z≠ = ZU. The error sum of squares 
and crossproducts matrix for (1) minus that for (2) is the matrix sum of 



150  Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

squares and crossproducts output in scph. Note that this approach avoids the 
question of testability. 

Example

The data for this example are from Maindonald (1984, pp. 203204). A multi-
variate regression model containing two dependent variables and three 
independent variables is fit using function MULTIREGRESS and the results 
stored in the structure info_v. The sum of squares and crossproducts matrix, 
scph, is then computed by calling HYPOTH_SCPH for the test that the third 
independent variable is in the model (determined by the specification of h). The 
degrees of freedom for scph also is computed.

x  =  TRANSPOSE([[7.0, 5.0, 6.0], $

                 [2.0, -1.0, 6.0], $

                 [7.0, 3.0, 5.0], $

                 [-3.0, 1.0, 4.0], $

                 [2.0, -1.0, 0.0], $

                 [2.0, 1.0, 7.0], $

                 [-3.0, -1.0, 3.0], $

                 [2.0, 1.0, 1.0], $

                 [2.0, 1.0, 4.0]])

y  =  TRANSPOSE([[7.0, 1.0], $

                 [-5.0, 4.0], $

                 [6.0, 10.0], $

                 [5.0, 5.0], $

                 [5.0, -2.0], $

                 [-2.0, 4.0], $

                 [0.0, -6.0], $

                 [8.0, 2.0], $

                 [3.0, 0.0]])

h  =  FLTARR(1, 4)

h(*)  =  0

h(0,  3)  =  1.0

coefs  =  MULTIREGRESS(x, y, Predict_Info = p)

scph  =  HYPOTH_SCPH(p, h, Dfh = dfh)

PRINT, "Degrees of Freedom Hypothesis =", dfh

Degrees of Freedom Hypothesis =      1.00000

PM, scph, Title = ’Sum of Squares and Crossproducts’

Sum of Squares and Crossproducts



HYPOTH_TEST Function  151

      100.000     -40.0000

     -40.0000      16.0000

Warning Errors

STAT_HYP_NOT_TESTABLE — The hypothesis is not completely testable 
within the computed tolerance. Each row of “h” must be a linear combination of 
the rows of “r”.

STAT_HYP_NOT_CONSISTENT — The hypothesis is inconsistent within the 
computed tolerance.

HYPOTH_TEST Function 
Performs tests for a multivariate general linear hypothesis HβU = G given the 
hypothesis sums of squares and crossproducts matrix SH. 

Usage

result = HYPOTH_TEST(info_v, dfh, scph) 

Input Parameters

info_v — One-dimensional array of type BYTE containing information about 
the regression fit. See function MULTIREGRESS.

dfh — Degrees of freedom for the sums of squares and crossproducts matrix. 

scph — Two-dimensional array of size nu by nu containing SH, the sums of 
squares and crossproducts attributable to the hypothesis.

Returned Value

result — The p-value corresponding to Wilks’ lambda test.

Input Keywords

Double — If present and nonzero, double precision is used.

U — Two-dimensional array of size n_dependent by nu containing the U matrix 
for the test HpβU = Gp where nu is the number of linear combinations of the 
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dependent variables to be considered. The value nu must be greater than 0 and 
less than or equal to n_dependent. 

Default: nu = n_dependent and U is the identity matrix

Output Keywords

Wilk_Lambda — Named variable into which the one-dimensional array con-
taining the Wilk’s lamda and p-value is stored.

Roy_Max_Root — Named variable into which the one-dimensional array con-
taining the Roy’s maximum root criterion and p-value is stored.

Hotelling_Trace — Named variable into which the one-dimensional array con-
taining the Hotelling’s trace and p-value is stored.

Pillai_Trace — Named variable into which the one-dimensional array contain-
ing the Pillai’s trace and p-value is stored.

Discussion

Function HYPOTH_TEST computes test statistics and p-values for the general 
linear hypothesis HβU = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix input in scph is 

where C is a solution to RTC = H and where D is a diagonal matrix with diago-
nal elements

See the section “Linear Dependence and the R Matrix” in the introduction of 
Chapter 2, Regression (page 56).

S H U G C DC H U GH

T
T= − −
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The error sum of squares and crossproducts matrix for the model Y = Xβ + ε is

which is input in MULTIREGRESS. The error sum of squares and crossprod-
ucts matrix for the hypothesis HβU = G computed by HYPOTH_TEST is

Let p equal the order of the matrices SE and SH, i.e.,

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input 
in info_v) be the degrees of freedom for error. Function HYPOTH_TEST com-
puted three test statistics based on eigenvalues λi (i = 1, 2, … p) of the 
generalized eigenvalue problem SHx = λSEx. These test statistics are as follows: 

Wilk’s lambda

Y X Y X
T

− −$ $β β	 
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T
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The associated p-value is based on an approximation discussed by Rao (1973, p. 
556). The statistic

has an approximate F distribution with pq and ms – pq / 2 + 1 numerator and 
denominator degrees of freedom, respectively, where 

and

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 2994300).

Roy’s maximum root

c = max λi over all i

where c is output as value = Roy_Max_Root(0). The p-value is based on the 
approximation

F
ms pq

pq
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where s = max (p, q) has an approximate F distribution with s and υ + q − s 
numerator and denominator degrees of freedom, respectively. The F test is exact 
if s = 1; the p-value is also exact. In general, the value output in
p_value = Roy_Max_Root(1) is lower bound on the actual p-value.

Hotelling’s trace

U is output as value = Hotelling_Trace(0). The p-value is based on the approxi-
mation of McKeon (1974) that supersedes the approximation of Hughes and 
Saw (1972). McKeon’s approximation is also discussed by Seber (1984, p. 39). 
For

the p-value is based on the result that 

has an approximate F distribution with pq and b degrees of freedom. The test is 
exact if min (p, q) = 1. For υ ≤ p + 1, the approximation is not valid, and 
p_value = Hotelling_Trace(1) is set to NaN.

These three test statistics are valid when SE is positive definite. A necessary 
condition for SE to be positive definite is υ ≥ p. If SE is not positive definite, a 
warning error message is issued, and both value and p_value are set to NaN.

Because the requirement υ ≥ p can be a serious drawback, HYPOTH_TEST 
computes a fourth test statistic based on eigenvalues θi (i = 1, 2, …, p) of the 
generalized eigenvalue problem SHw = θ(SH + SE) w. This test statistic requires 
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a less restrictive assumption—SH + SE is positive definite. A necessary condi-
tion for SH + SE to be positive definite is υ + q ≥ p. If SE is positive definite, 
HYPOTH_TEST avoids the computation of the generalized eigenvalue prob-
lem from scratch. In this case, the eigenvalues θi are obtained from λi by 

The fourth test statistic is as follows:

Pillai’s trace

V is output as value = Pillai_Trace(0). The p-value is based on an approxima-
tion discussed by Pillai (1985). The statistic 

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numera-
tor and denominator degrees of freedom, respectively, where

s = min (p, q)

m = 1/2(|p - q| -1)

n = 1/2(υ - p - 1)

The F test is exact if min (p, q) = 1.

Example 1

The data for this example are from Maindonald (1984, p. 20310204). A multi-
variate regression model containing two dependent variables and three 
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independent variables is fit using function  MULTIREGRESS and the results 
stored in info_v. The sum of squares and crossproducts matrix, scph, is then 
computed using HYPOYH_SCPH for the test that the third independent vari-
able is in the model (determined by specification of h). Finally, function 
HYPOTH_TEST is used to compute the p-value for the test statistic (Wilk’s 
lambda).

x  =  TRANSPOSE([[7.0, 5.0, 6.0], $

                [2.0, -1.0, 6.0], $

                [7.0, 3.0, 5.0], $

                [-3.0, 1.0, 4.0], $

                [2.0, -1.0, 0.0], $

                [2.0, 1.0, 7.0], $

                [-3.0, -1.0, 3.0], $

                [2.0, 1.0, 1.0], $

                [2.0, 1.0, 4.0]])

y  =  TRANSPOSE([[7.0, 1.0], $

                 [-5.0, 4.0], $

                 [6.0, 10.0], $

                 [5.0, 5.0], $

                 [5.0, -2.0], $

                 [-2.0, 4.0], $

                 [0.0, -6.0], $

                 [8.0, 2.0], $

                 [3.0, 0.0]])

h  =  FLTARR(1, 4)

h(*)  =  0

h(0, 3)  =  1.0

coefs  =  MULTIREGRESS(x, y, Predict_Info = p)

scph  =  HYPOTH_SCPH(p, h, Dfh = dfh)

pvalue = HYPOTH_TEST(p, dfh, scph)

PM, pvalue, format  =  "(F10.6)", Title = ’P-value’

P-value

  0.000010

Example 2

This example is the same as the first example, but more statistics are com-
puted. Also, the U matrix, U, is explicitly specified as the identity matrix 
(which is the same default configuration of U). 
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x  =  TRANSPOSE([[7.0, 5.0, 6.0], $

                 [2.0, -1.0, 6.0], $

                 [7.0, 3.0, 5.0], $

                 [-3.0, 1.0, 4.0], $

                 [2.0, -1.0, 0.0], $

                 [2.0, 1.0, 7.0], $

                 [-3.0, -1.0, 3.0], $

                 [2.0, 1.0, 1.0], $

                 [2.0, 1.0, 4.0]])

y  =  TRANSPOSE([[7.0, 1.0], $

                 [-5.0, 4.0], $

                 [6.0, 10.0], $

                 [5.0, 5.0], $

                 [5.0, -2.0], $

                 [-2.0, 4.0], $

                 [0.0, -6.0], $

                 [8.0, 2.0], $

                 [3.0, 0.0]])

h  =  FLTARR(1, 4)

h(*)  =  0

h(0, 3)  =  1.0

u  =  [[1, 0], [0, 1]]

coefs  =  MULTIREGRESS(x, y, Predict_Info = p)

scph  =  HYPOTH_SCPH(p, h, Dfh = dfh)

pvalue  =  HYPOTH_TEST(p, dfh, scph, U = u, $

                       Wilk_Lambda = wilk_lambda, $ 

                       Roy_Max_Root = roy_max_root, $ 

                       Hotelling_Trace = hotelling_trace, $

                       Pillai_Trace = pillai_trace)

PRINT, "Wilk value = ", wilk_lambda(0), "  p-value =", $

        wilk_lambda(1)

Wilk value =    0.00314861  p-value =  9.89437e-06  

PRINT, "Roy value = ", roy_max_root(0), "  p-value =", $

        roy_max_root(1)

Roy value =       316.601  p-value =  9.89437e-06

PRINT, "Hotelling value = ", hotelling_trace(0), "  p-value =", 
$

        hotelling_trace(1)
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Hotelling value =       316.601  p-value =  9.89437e-06

PRINT, "Pillai value = ", pillai_trace(0), "  p-value =", $

        pillai_trace(1)

Pillai value =      0.996851  p-value =  9.89437e-06

Warning Errors

STAT_SINGULAR_1 — “u”*“scpe”*“u” is singular. Only Pillai’s trace can be 
computed. Other statistics are set to NaN.

Fatal Errors

STAT_NO_STAT_1 — “scpe” + “scph” is singular. No tests can be computed.

STAT_NO_STAT_2 — No statistics can be computed. Iterations for eigenval-
ues for the generalized eigenvalue problem “scph”*x = 
(lambda)*(“scph”+“scpe”)*x failed to converge.

STAT_NO_STAT_3 — No statistics can be computed. Iterations for eigenval-
ues for the generalized eigenvalue problem “scph”*x = 
(lambda)*(“scph”+“u”*“scpe”*“u”)*x failed to converge.

STAT_SINGULAR_2 — “u”*“scpe”*“u” + “scph” is singular. No tests can be 
computed.

STAT_SINGULAR_TRI_MATRIX — The input triangular matrix is singular. 
The index of the first zero diagonal element is equal to #.
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NONLINOPT Function 
Fits data to a nonlinear model (possibly with linear constraints) using the suc-
cessive quadratic programming algorithm (applied to the sum of squared errors, 
sse = ∑(yi − f(xi; θ))2) and either a finite difference gradient or a user-supplied 
gradient.

Usage

result = NONLINOPT(f, n_parameters, x, y)

Input Parameters

f — Scalar string specifying a user-supplied function that defines the nonlinear 
regression problem at a given point. Function f  has the following parameters:

xi — One-dimensional array of length n_independent at which point the 
function is evaluated.

theta — One-dimensional array of length n_parameters containing the 
current values of the regression coefficients.

Function f returns a predicted value at the point xi. In the following, 
f(xi; θ), or just fi, denotes the value of this function at the point xi, for a 
given value of θ. (Both xi and θ are arrays.).

n_parameters — Number of parameters to be estimated.

x — Two-dimensional array of size n_observations by n_independent contain-
ing the matrix of independent (explanatory) variables where n_observations is 
the number of observations and n_independent is the number of independent 
variables.

y — One-dimensional array of length n_observations containing the dependent 
(response) variable.

Returned Value

result — One-dimensional array of length n_parameters containing a solution,

$θ
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for the nonlinear regression coefficients.

Input Keywords

Double — If present and nonzero, double precision is used.

Theta_Guess — One-dimensional array with n_parameters components con-
taining an initial guess.

Default: Theta_Guess(*) = 0

Jacobian — Scalar string specifying a user-supplied function to compute the i-
th row of the Jacobian.  The function specified by Jacobian has the following 
parameters:

Xi — One-dimensional array containing the n_independent data values 
corresponding to the i-th row.  (Input)

Theta — One-dimensional array of length n_parameters containing the 
regression coefficients for which the Jacobian is evaluated.  (Input)

The return value of this function is a one-dimensional array containing 
the computed n_parameters row of the Jacobian for observation i at 
Theta. Note that each derivative f(xi)/q should be returned in element 
(j - 1) of the returned array for j = 1, 2, ..., n_parameters.  Further note 
that in order to maintain consistency with the other nonlinear solver, 
NONLINREGRESS, the Jacobian values must be specified as the nega-
tive of the calculated derivatives.

Xlb — One-dimensional array of length n_parameters containing the lower 
bounds on the parameters; choose a very large negative value if a component 
should be unbounded below or set Xlb(i) = Xub(i) to freeze the i-th variable.

Default: All parameters are bounded below by -106.

Xub — One-dimensional array of length n_parameters containing the upper 
bounds on the parameters; choose a very large value if a component should be 
unbounded above or set Xlb(i) = Xub(i) to freeze the i-th variable.

Default: All parameters are bounded above by 106.

A_Matrix — Two-dimensional array of size n_constraints by n_parameters 
containing the equality constraint gradients in the first Meq rows, followed by 
the inequality constraint gradients.  Here n_constraints is the total number of 
linear constraints (excluding simple bounds). Keywords A_Matrix and B must 
be used together.
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Default:  There are no default linear contraints.

B — One-dimensional array of length n_constraints containing the right-hand 
sides of the linear constraints. Keywords A_Matrix and B must be used together. 

Default: There are no default linear constraints.

A_Matrix and B are the linear constraints, specifically, the contraints on θ are:
ai1 θ1 + ... + aij θj = bi   for i = 1, n_equality and j = 1, n_parameter, and 

ak1 θ1 + ... + akj θj ≤ bk   for k = n_equality + 1, n_constraints and j = 1, 
n_parameter.

Meq — Number of the A_Matrix constraints which are equality constraints; the 
remaining (n_constraints –Meq) constraints are inequality constraints.

Default: Meq = 0.

Frequencies — One-dimensional array of length n_observations containing the 
frequency for each observation.

Default: Frequencies(*) = 1

Weights — One-dimensional array of length n_observations containing the 
weight for each observation.

Default: Weights(*) = 1

Acc — The nonnegative tolerance on the first order conditions at the calculated 
solution.

Max_Sse_Evals — The maximum number of sse evaluations allowed.

Default: Max_Sse_Eval = 400

Output Keywords

Stop_Info — Named variable into which one of the following integer values to 
indicate the reason for leaving the routine is stored:

Stop_info Reason for leaving routine

1 θ ιs feasible, and the condition that depends on Acc is satisfied.

2 θ is feasible, and rounding errors are preventing further progress.

3 θ is feasible, but sse fails to decrease although a decrease is pre-
dicted by the current gradient vector.



NONLINOPT Function  163

Num_Active — Named variable into which the final number of active con-
straints is stored.

Active_Const — Named variable into which a one-dimensional array of length 
Num_Active containing the indices of the final active constraints is stored.

Lagrange_Mult — Named variable into which a one-dimensional array of 
length Num_Active containing the Lagrange multiplier estimates of the final 
active constraints is stored.

Predicted — Named variable into which a one-dimensional array of length 
n_observations containing the predicted values at the approximate solution is 
stored. 

Residual — Named variable into which a one-dimensional array of length 
n_observations containing the residuals at the approximate solution is stored. 

Sse — Named variable into which the residual sum of squares is stored.

Discussion

Function NONLINOPT is based on M.J.D. Powell’s TOLMIN, which solves 
linearly constrained optimiation problems, i.e., problems of the form min f(θ), θ 
∈ ℜ, subject to

A1θ = b1

4 The calculation cannot begin because A_Matrix contains fewer 
than n_constraints constraints or because the lower bound on a 
variable is greater than the upper bound.

5 The equality constraints are inconsistent. These constraints 
include any components of 

that are frozen by setting Xlb(i) equal to Xub(i).
6 The equality constraints and the bound on the variables are 

found to be inconsistent.

7 There is no possible 1 that satisfies all of the constraints. 

8 Maximum number of sse evaluations (Max_Sse_Eval) is 
exceeded.

9 θ is determined by the equality constraints.

Stop_info Reason for leaving routine

$θ
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A2θ ≤ b2

θI ≤ θ ≤ θu

given the vectors b1,  b2, θI, and θu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and 
redundancy. If the equality constraints are consistent, the method will revise θ0, 
the initial guess provided by the user, to satisfy

A1θ = b1

Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This 
is done by solving a sequence of quadratic programming subproblems to mini-
mize the sum of the constraint or bound violations.

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequal-
ity constraints that have small residuals. Here, the simple bounds are treated as 
inequality constraints. Let Ik be the set of indices of active constraints. The fol-
lowing quadratic programming problem 

subject to 

ajd = 0 j ∈ Ik

ajd  ≤ 0 j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint 
in A1 or A2 or a bound constraint on θ. In the latter case, the aj = ei for the 
bound constraint θi ≤ (θu)i and aj = ei for the constraint θi ≤ (θl)i. Here, ei is a 
vector with a 1 as the i-th component, and zeroes elsewhere. λk are the 
Lagrange multipliers, and Bk is a positive definite approximation to the second 
derivative ∇2 f(θk).

After the search direction dk is obtained, a line search is performed to locate a 
better point. The new point θk+1 = θk + αkdk has to satisfy the conditions

f (θk + αkdk ) ≤ f (θk) + 0.1αk (dk)T ∇f (θk)

and

(dk)T∇ f (θk + αkdk) ≥ 0.7 (dk)T∇ f (θk)

min f d f d B dk T k T kθ θ� � � �+ ∇ + 1

2



NONLINOPT Function  165

The main idea in forming the set Jk is that, if any of the inequality constraints 
restricts the step-length αk, then its index is not in Jk. Therefore, small steps are 
likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, 
if the condition 

(dk)T∇ f (θk + αkdk) − ∇ f (θk) > 0

holds. Let θk ← θk+1, and start another iteration.

The iteration repeats until the stopping criterion

||∇ f (θk) − Akλk||2 ≤ τ

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell 
(1988, 1989).

Since a finite-difference method is used to estimate the gradient, for some sin-
gle precision calculations. An inaccurate estimate of the gradient may cause the 
algorithm to terminate at a noncritical point. In such cases, high precision arith-
metic is recommended. Also, whenever the exact gradient can be easily 
provided, the gradient should be passed to NONLINOPT using the optional key-
word Jacobian.

Example 1

In this example, a data set is fitted to the nonlinear model function

FUNCTION fcn, x, theta

   res  =  SIN(theta(0)*x(0))

   RETURN, res

END

x  =  [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

y  =  [0.05, 0.21, 0.67, 0.72, 0.98, 0.94, $

       1.00, 0.73, 0.44, 0.36, 0.02]

n_parameters  =  1

y xi i i= +sin θ ε0� �
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theta_hat  =  NONLINOPT("fcn", n_parameters, x, y)

% NONLINOPT: Note: STAT_NOTE_3

"theta" is feasible but the objective function fails to

decrease.  Using double precision may help.

PRINT, "Theta Hat = ", theta_hat

Theta Hat =       3.16143

Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H. 
Smith and S. D. Dubey (1964), "Some reliability problems in the chemical 
industry", Industrial Quality Control, 21 (2), 1964, pp. 641470] A certain prod-
uct must have 50% available chlorine at the time of manufacture. When it 
reaches the customer 8 weeks later, the level of available chlorine has dropped 
to 49%. It was known that the level should stabilize at about 30%. To predict 
how long the chemical would last at the customer site, samples were analyzed 
at different times. It was postulated that the following nonlinear model should 
fit the data.

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 
is 0.30. Using the last data point (x = 42, y = 0.39) and θ0 = 0.30 and the above 
nonlinear equation, an estimate for θ1of 0.02 is obtained.

The constraints that θ0 ≥ 0 and θ1 ≥ 0 are also imposed. These are equivalent to 
requiring that the level of available chlorine always be positive and never 
increase with time.

The Jacobian of the nonlinear model equation is also used.

FUNCTION fcn, x, theta

   res  =  theta(0) + (0.49 - theta(0))* $

           exp(-theta(1)*(x(0) - 8.0))

   RETURN, res

END

FUNCTION jacobian, x, theta

   fjac  =  theta

   fjac(*)  =  0

y ei
xi

i= + − +− −θ θ εθ
0

80 49.� � 1 6
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   fjac(0)  =  -1.0 + exp(-theta(1)*(x(0) - 8.0));

   fjac(1)  =  (0.49 - theta(0))*(x(0) - 8.0) * $

              exp(-theta(1)*(x(0) - 8.0));

   RETURN, fjac

END

x  =  [8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, $

      12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, $

      20.0, 20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, $

      26.0, 26.0, 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, $

      32.0, 34.0, 36.0, 36.0, 38.0, 38.0, 40.0, 42.0]

y  =  [0.49, 0.49, 0.48, 0.47, 0.48, 0.47, 0.46, 0.46, 0.45, $

       0.43, 0.45, 0.43, 0.43, 0.44, 0.43, 0.43, 0.46, 0.45, $

       0.42, 0.42, 0.43, 0.41, 0.41, 0.40, 0.42, 0.40, 0.40, $

       0.41, 0.40, 0.41, 0.41, 0.40, 0.40, 0.40, 0.38, 0.41, $

       0.40, 0.40, 0.41, 0.38, 0.40, 0.40, 0.39, 0.39]

theta_guess  =  [0.3, 0.02]

xlb  =  [0.0, 0.0]

n_parameters  =  2

theta_hat  =  NONLINOPT("fcn", n_parameters, x, y, $

                        Theta_Guess = theta_guess, Xlb = 
xlb, $

                        Jacobian = "jacobian", Sse = sse)

% NONLINOPT: Note: STAT_NOTE_3

"theta" is feasible but the objective function fails to

decrease.  Using double precision may help.

PRINT, "Theta Hat =", theta_hat

Theta Hat =     0.390143     0.101631

PRINT, "Residual Sum of Squares =", sse

Residual Sum of Squares =   0.00500168

Fatal Errors

STAT_BAD_CONSTRAINTS_1 — The equality constraints are inconsistent.

STAT_BAD_CONSTRAINTS_2 — The equality constraints and the bounds on 
the variables are found to be inconsistent.
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STAT_BAD_CONSTRAINTS_3 — No vector “theta” satisfies all of the con-
straints. Specifically, the current active constraints prevent any change in “theta” 
that reduces the sum of constraint violations.

STAT_BAD_CONSTRAINTS_4 — The variables are determined by the equal-
ity constraints.

STAT_TOO_MANY_ITERATIONS_1 — Number of function evaluations 
exceeded “maxfcn” = #.
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LNORMREGRESS Function 
Fits a multiple linear regression model using criteria other than least squares.  
Namely, LNORMREGRESS allows the user to choose Least Absolute Value 
(L1), Least Lp norm (Lp), or Least Maximum Value  (Minimax or Linfinity) 
method of multiple linear regression.

Usage

result = LNORMREGRESS(x, y)

Input Parameters

x — Two-dimensional array of size n_rows by n_independent containing the 
independent (explanatory) variables(s) where n_rows = N_ELEMENTS(x(*,0)) 
and n_independent is the number of independent (explanatory) variables. The i-
th column of x contains the i-th independent variable.

y — One-dimensional array of size n_rows containing the dependent (response) 
variable. 

Returned Value

result — One-dimensional array of length n_independent + 1 containing a least 
absolute value solution for the regression coefficients.  The estimated intercept 
is the initial component of the array, where the i-th component contains the 
regression coefficients for the i-th dependent variable.  If the keyword 
No_Intercept is used then the (i-1)-st component contains the regression coeffi-
cients for the i-th dependent variable.  LNORMREGRESS returns the Lp norm 
or least maximum value solution for the regression coefficients when appropri-
ately specified in the input keyword list.

Input Keywords

Double — If present and nonzero, double precision is used.

Lav — By default (or if Lav is used) the function fits a multiple linear regres-
sion model using the least absolute values criterion. Keywords Lav, Llp, and 
Lmv can not be used together. 

Llp — If present and nonzero, LNORMREGRESS fits a multiple linear regres-
sion model using the Lp norm criterion.  Llp requires the keyword P, for P ≥ 1. 
Keywords Lav, Llp, and Lmv can not be used together. 
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P — The p in the Lp norm criterion (see the Discussion section for details). P 
must be greater than or equal to one. Keywords P and Llp must be used 
together.

Lmv — If present and nonzero, LNORMREGRESS fits a multiple linear regres-
sion model using the minimax criterion. Keywords Lav, Llp, and Lmv can not 
be used together. 

Eps — Convergence criterion. If the maximum relative difference in residuals 
from the k-th to (k+1)-st iterations is less than Eps, convergence is declared. 
Keyword Llp is required when using keyword Eps.

Default: Eps = 100 * (machine epsilon).

Weights — One-dimensional array of size n_rows containing the weights for 
the independent (explanatory) variable. Keyword Llp is required when using 
keyword Weights.

Frequencies — One-dimensional array of size n_rows containing the frequen-
cies for the independent (explanatory) variable. Keyword Llp is required when 
using keyword Frequencies.

No_Intercept — If present and nonzero, the intercept term 

is omitted from the model and the Returned Value from regression is a one-
dimensional array of length n_independent.  By default the fitted value for 
observation i is 

where k = n_independent.

Tolerance — Tolerance used in determining linear dependence. Keyword Llp is 
required when using keyword Tolerance.  

Default:  Tolerance = 100 * (machine epsilon).

$β0	 
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Output Keywords

Rank — Named variable into which the rank of the fitted model is stored.

Iters — Named variable into which the number of iterations performed is 
stored.

Nmissing — Named variable into which the number of rows of data containing 

NaN (not a number) for the dependent or independent variables is stored.  If a 
row of data contains NaN for any of these variables, that row is excluded from 
the computations.

Sea — Named variable into which the sum of the absolute value of the errors is 
stored. Keyword Lav is required when using keyword Sea.

Resid_Max — Named variable into which the magnitude of the largest residual 
is stored. Keyword Lmv is required when using keyword Resid_Max.

R_Matrix — Named variable into which the two-dimensional array containing 
the upper triangular matrix of dimension (number of coeffieciencts by number 
of coeffecients) containing the R matrix from a QR decomposition of the matrix 
of regressors is stored. Keyword Llp is required when using keyword R_Matrix.

Df — Named variable into which the sum of the frequencies minus Rank is 
stored.  In least squares fit (p=2) Df is called the degrees of freedom of error. 
Keyword Llp is required when using keyword Df.

Residuals — Named variable into which the one-dimensional array (of length 
equal to the number of observations) containing the residuals is stored.
Keyword Llp is required when using keyword Residuals.

Scale — Named variable into which the square of the scale constant used in an 
Lp analysis is stored.  An estimated asymptotic variance-covariance matrix of 
the regression coefficients is Scale * (RTR)-1. Keyword Llp is required when 
using keyword Scale.

Resid_Norm — Named variable into which the Lp norm of the residuals is 
stored. Keyword Llp is required when using keyword Resid_Norm.

Discussion 

Least Absolute Value Criterion

Function LNORMREGRESS computes estimates of the regression coefficients 
in a multiple linear regression model. For keyword Lav (default), the criterion 
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satisfied is the minimization of the sum of the absolute values of the deviations 
of the observed response yi from the fitted response

for a set on n observations. Under this criterion, known as the L1 or LAV (least 
absolute value) criterion, the regression coefficient estimates minimize

The estimation problem can be posed as a linear programming problem. The 
special nature of the problem, however, allows for considerable gains in effi-
ciency by the modification of the usual simplex algorithm for linear 
programming. These modifications are described in detail by Barrodale and 
Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares 
solution prior to the use of keyword Lav. This is particularly useful when a 
least-squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from 
this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model using 
keyword Lav.

3. Add the two estimated regression coefficient vectors from Steps 1 and 2. 
The result is an L1 solution.

When multiple solutions exist for a given problem, option Lav may yield differ-
ent estimates of the regression coefficients on different computers, however, the 
sum of the absolute values of the residuals should be the same (within round-
ing differences). The informational error indicating nonunique solutions may 
result from rounding accumulation. Conversely, because of rounding the error 
may fail to result even when the problem does have multiple solutions.
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Lp Norm Criterion

Keyword Llp computes estimates of the regression coefficients in a multiple lin-
ear regression model y = Xβ + ε under the criterion of minimizing the Lp norm 
of the deviations for i = 0, ... , n - 1 of the observed response yi from the fitted 
response

for a set on n observations and for p ≥ 1. For the case when keywords Weights 
and Frequencies are not supplied, the estimated regression coefficient vector,

(output in result) minimizes the Lp norm 

The choice p = 1 yields the maximum likelihood estimate for β when the errors 
have a Laplace distribution. The choice p = 2 is best for errors that are normally 
distributed. Sposito (1989, pages 36−40) discusses other reasonable alternatives 
for p based on the sample kurtosis of the errors. 

Weights are useful if the errors in the model have known unequal variances
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In this case, the weights should be taken as

Frequencies are useful if there are repetitions of some observations in the data 
set. If a single row of data corresponds to ni observations, set the frequency fi = ni. 
In general, keyword Llp minimizes the Lp norm

The asymptotic variance-covariance matrix of the estimated regression coeffi-
cients is given by 

where R is from the QR decomposition of the matrix of regressors (output in 
keyword R_Matrix) and where an estimate of λ2 is output in keyword Scale.

In the discussion that follows, we will first present the algorithm with frequen-
cies and weights all taken to be one. Later, we will present the modifications to 
handle frequencies and weights different from one. 

Keyword Llp uses Newton’s method with a line search for p > 1.25 and, for 
p ≤ 1.25, uses a modification due to Ekblom (1973, 1987) in which a series of 
perturbed problems are solved in order to guarantee convergence and increase 
the convergence rate. The cutoff value of 1.25 as well as some of the other 
implementation details given in the remaining discussion were investigated by 
Sallas (1990) for their effect on CPU times. 
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In each case, for the first iteration a least-squares solution for the regression 
coefficients is computed using routine MULTIREGRESS (page 77). If p = 2, 
the computations are finished. Otherwise, the residuals from the k-th iteration,

are used to compute the gradient and Hessian for the Newton step for the 
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent 
1/p in the Lp norm can be omitted during the iterations.) 

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the 
gradient and Hessian at the (k + 1)-st iteration depend upon

and 

In the case 1.25 < p < 2 and 

and the Hessian are undefined; and we follow the recommendation of Merle and 
Spath (1974). Specifically, we modify the definition of 
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to the following:

where τ equals 100 * machine epsilon times the square root of the residual 
mean square from the least-squares fit. 

Let V(k+1) be a diagonal matrix with diagonal entries

and let z(k+1) be a vector with elements

In order to compute the step on the (k + 1)-st iteration, the R from the QR 
decomposition of 

[V(k+1)]1/2X

 is computed using fast Givens transformations. Let 

R(k+1)

denote the upper triangular matrix from the QR decomposition.  The linear 
system

 [R(k+1)]TR(k+1)d(k+1)= XT z(k+1)

is solved for 

d(k+1)
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where R(k+1) is from the QR decomposition of V(k+1)]1/2X . The step taken on the 
(k + 1)-st iteration is

The first attempted step on the (k + 1)-st iteration is with α(k+1) = 1. If all of the

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, 
pages 528−529) for further discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the 
predicted decrease in the p-th power of the Lp norm of the residuals, a back-
tracking linesearch procedure is used. The backtracking procedure uses a one-
dimensional quadratic model to estimate the backtrack constant p. The value of 
p is constrained to be no less that 0.1. An approximate upper bound for p is 0.5. 
If after 10 successive backtrack attempts, α(k) = p1p2... p10 does not produce a 
step with a sufficient decrease, then LNORMREGRESS issues a message with 
error code 5. For further details on the backtrack line-search procedure, see 
Dennis and Schnabel (1983, pages 126−127). 

Convergence is declared when the maximum relative change in the residuals 
from one iteration to the next is less than or equal to Eps.  The relative change

in the i-th residual from iteration k to iteration k + 1 is computed as follows:
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where s is the square root of the residual mean square from the least-squares fit 
on the first iteration.

For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous proce-
dure that incorporate Ekblom’s (1973) results. A sequence of perturbed 
problems are solved with a successively smaller perturbation constant c. On the 
first iteration, the least-squares problem is solved. This corresponds to an infi-
nite c. For the second problem, c is taken equal to s, the square root of the 
residual mean square from the least-squares fit. Then, for the (j + 1)-st prob-
lem, the value of c is computed from the previous value of c according to

Each problem is stated as 

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend 
upon

and
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where

The linear system [R(k+1)]TR(k+1)d(k+1)= XTz(k+1) is solved for d(k+1) where R(k+1) is 
from the QR decomposition of [V(k+1) ]1/2X. The step taken on the (k + 1)-st iter-
ation is

where the first attempted step is with α(k+1)= 1. If necessary, the backtracking 
line-search procedure discussed earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence 
epsilon equal to max(Eps, 10-j) where j = 1, 2, 3, ... indexes the problems 
(j = 0 corresponds to the least-squares problem). 

After the convergence of a problem for a particular c, Ekblom’s (1987) extrapo-
lation technique is used to compute the initial estimate of β for the new 
problem. Let R(k), 

and c be from the last iteration of the last problem. Let
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and let t be the vector with elements ti. The initial estimate of β for the new 
problem with perturbation constant 0.01c is 

where ∆c = (0.01c - c) = -0.99c, and where d is the solution of the linear system 
[R(k)]ΤR(k)d = XTt.

Convergence of the sequence of problems is declared when the maximum rela-
tive difference in residuals from the solution of successive problems is less than 
Eps. 

The preceding discussion was limited to the case for which Weights(*) = 1 and 
Frequencies(*) = 1, i.e., the weights and frequencies are all taken equal to one. 
The necessary modifications to the preceding algorithm to handle weights and 
frequencies not all equal to one are as follows:

1. Replace 

in the definitions of
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These replacements have the same effect as multiplying the i-th row of X and y 
by

and repeating the row fi times except for the fact that the residuals returned by 
LNORMREGRESS are in terms of the original y and X. 

Finally, R and an estimate of λ2 are computed. Actually, R is recomputed 
because on output it corresponds to the R from the initial QR decomposition for 
least squares. The formula for the estimate of λ2 depends on p. 

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987)

with 

where z0.975 is the 97.5 percentile of the standard normal distribution, and where 
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For p = 2, the estimator of λ2 is the customary least-squares estimator given by

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money 
1989)

with 

Least Minimum Value Criterion (minimax)

Keyword Lmv computes estimates of the regression coefficients in a multiple 
linear regression model. The criterion satisfied is the minimization of the maxi-
mum deviation of the observed response yi from the fitted response 

for a set on n observations. Under this criterion, known as the minimax or LMV 
(least maximum value) criterion, the regression coefficient estimates minimize 
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The estimation problem can be posed as a linear programming problem. A dual 
simplex algorithm is appropriate, however, the special nature of the problem 
allows for considerable gains in efficiency by modification of the dual simplex 
iterations so as to move more rapidly toward the optimal solution. The modifi-
cations are described in detail by Barrodale and Phillips (1975). 

When multiple solutions exist for a given problem, Lmv may yield different 
estimates of the regression coefficients on different computers, however, the 
largest residual in absolute value should have the same absolute value (within 
rounding differences). The informational error indicating nonunique solutions 
may result from rounding accumulation. Conversely, because of rounding, the 
error may fail to result even when the problem does have multiple solutions.

Example 1

A straight line fit to a data set is computed under the LAV criterion.

PRO print_results, coefs, rank, sea, iters, nmissing

   PRINT, "B =   ", coefs(0), coefs(1), $

          Format = "(A6, F5.2, 5X, F5.2)"

   PRINT

   PRINT, "Rank of Regressors Matrix     = ", rank, $

          Format = "(A32, I3)"

   PRINT, "Sum Absolute Value of Error   = ", sea, $

          Format = "(A32, F7.4)"

   PRINT, "Number of Iterations          = ", iters, $

          Format = "(A32, I3)"

   PRINT, "Number of Rows Missing        = ", nmissing, $

          Format = "(A32, I3)"

END

x  =  [1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0]

y  =  [1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0]

coefs  =  LNORMREGRESS(x, y, Nmissing = nmissing, $

                       Rank = rank, Iters = iters, Sea = 
sea)

print_results, coefs, rank, sea, iters, nmissing

B =    0.50      0.50
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Rank of Regressors Matrix     =   2

Sum Absolute Value of Error   =  6.0000

Number of Iterations          =   2

Number of Rows Missing        =   0

Example 2

Different straight line fits to a data set are computed under the criterion of mini-
mizing the Lp norm by using  p equal to 1, 1.5, 2.0 and 2.5.

PRO print_results, coefs, residuals, p, resid_norm, rank, df, $

                   iters, nmissing, scale, rm

   PRINT, "Coefficients ", coefs, Format = "(A13, 2F7.2)"

   PRINT, "Residuals ", residuals, Format = "(A10, 8F6.2)"

   PRINT

   PRINT, "p                                ", p, $

          Format = "(A33, F6.3)"

   PRINT, "Lp norm of the residuals         ", resid_norm, $ 

               Format = "(A33, F6.3)"

   PRINT, "Rank of the matrix of regressors ", rank, $

               Format = "(A33, I6)"

   PRINT, "Degrees of freedom error         ", df, $

               Format = "(A33, F6.3)"

   PRINT, "Number of iterations             ", iters, $

               Format = "(A33, I6)"

   PRINT, "Number of missing values         ", nmissing, $

               Format = "(A33, I6)"

   PRINT, "Square of the scale constant     ", scale, $

               Format = "(A33, F6.3)"

   PRINT

   PM, rm, Format = "(2F8.3)", Title = "      R matrix"

   PRINT

   PRINT, "------------------------------------------------"

   PRINT

END
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x  =  [1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0]

y  =  [1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0]

eps  =  0.001

FOR i  =  0, 3 DO BEGIN 

   p  =  1.0 + i*0.5

   coefs  =  LNORMREGRESS(x, y, /Llp, P = p, Eps = eps, $

                          Nmissing = nmissing, Rank = rank, 
$

                          Iters = iters, Scale = scale, $

                          Df = df, R_Matrix = rm, $

                          Residuals = residuals, $

                          Resid_Norm = resid_norm)

   print_results, coefs, residuals, p, resid_norm, rank, df, $

                   iters, nmissing, scale, rm 

ENDFOR

END

Coefficients    0.50   0.50

Residuals  -0.00  2.50 -1.50  0.50 -0.50  0.50 -0.50  0.00

p                                 1.000

Lp norm of the residuals          6.002

Rank of the matrix of regressors      2

Degrees of freedom error          6.000

Number of iterations                  8

Number of missing values              0

Square of the scale constant      6.248

      R matrix

   2.828   8.485

   0.000   3.464

------------------------------------------------

Coefficients    0.39   0.56

Residuals   0.06  2.39 -1.50  0.50 -0.55  0.45 -0.61 -0.16
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p                                 1.500

Lp norm of the residuals          3.712

Rank of the matrix of regressors      2

Degrees of freedom error          6.000

Number of iterations                  6

Number of missing values              0

Square of the scale constant      1.059

      R matrix

   2.828   8.485

   0.000   3.464

------------------------------------------------

Coefficients   -0.12   0.75

Residuals   0.38  2.12 -1.38  0.62 -0.62  0.38 -0.88 -0.62

p                                 2.000

Lp norm of the residuals          2.937

Rank of the matrix of regressors      2

Degrees of freedom error          6.000

Number of iterations                  1

Number of missing values              0

Square of the scale constant      1.438

      R matrix

   2.828   8.485

   0.000   3.464

------------------------------------------------

Coefficients   -0.44   0.87

Residuals   0.57  1.96 -1.30  0.70 -0.67  0.33 -1.04 -0.91

p                                 2.500

Lp norm of the residuals          2.540
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Rank of the matrix of regressors      2

Degrees of freedom error          6.000

Number of iterations                  4

Number of missing values              0

Square of the scale constant      0.789

      R matrix

   2.828   8.485

   0.000   3.464

Example 3

A straight line fit to a data set is computed under the LMV criterion.

PRO print_results, coefs, rank, rm, iters, nmissing

   PRINT, "B =   ", coefs(0), coefs(1), $

           Format = "(A6, F5.2, 5X, F5.2)"

   PRINT

   PRINT, "Rank of Regressors Matrix       = ", rank, $

           Format = "(A34, I3)"

   PRINT, "Magnitude of Largest Residual   = ", rm, $

           Format = "(A34, F7.4)"

   PRINT, "Number of Iterations            = ", iters, $

           Format = "(A34, I3)"

   PRINT, "Number of Rows Missing          = ", nmissing, $

           Format = "(A34, I3)"

END

x  =  [0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0]

y  =  [0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0]

coefs  =  LNORMREGRESS(x, y, /Lmv, Nmissing = nmissing, $

                       Rank = rank, Iters = iters, $

                       Resid_Max = rm)

print_results, coefs, rank, rm, iters, nmissing

B =    1.00      1.00

Rank of Regressors Matrix       =   2

Magnitude of Largest Residual   =  1.0000
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Number of Iterations            =   3

Number of Rows Missing          =   0
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CHAPTER

3

Correlation and Covariance 

Contents of Chapter 

Variances, Covariances, and Correlations

Variance-covariance or 
correlation matrix .....................COVARIANCES Function 

Partial correlations and 
covariances ...................................  PARTIAL_COV Function

Pooled covariance matrix .............  POOLED_COV Function

Robust estimate of 
covariance matrix ..........................  ROBUST_COV Function

Introduction
This chapter is concerned with measures of correlation for bivariate data as fol-
lows:

• The usual multivariate measures of correlation and covariance for continu-
ous random variables are produced by routine COVARIANCES.  

• For data grouped by some auxiliary variable, routine POOLED_COV 
can be used to compute the pooled covariance matrix along with the means 
for each group.  

• Partial correlations or covariances are computed by PARTIAL_COV.  



190  Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

• Function ROBUST_COV computes robust M-estimates of the mean and 
covarianve matrix from a matrix of observations.

COVARIANCES Function 
Computes the sample variance-covariance or correlation matrix.

Usage

result = COVARIANCES(x)

Input Parameters

x — Two-dimensional matrix containing the data. The data value for the i-th 
observation of the j-th variable should be in x(i,j).

Returned Value

result — If no keywords are used, COVARIANCES returns a two-dimensional 
matrix containing the sample variance-covariance matrix of the observations in 
which value in element (i, j) corresponds to the sample covariance between the 
i-th and j-th variable. 

Input Keywords

Double — If present and nonzero, double precision is used.

Var_Covar or
Corrected_Sscp or
Correlation or
Stdev_Correlation — Exactly one of these options is used to specify the type of 
matrix to be computed.

Keyword Type of Matrix

Var_Covar variance-covariance matrix (default)

Corrected_Sscp corrected sum-of-squares and crossproducts 
matrix

Correlation correlation matrix
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Weight — Array containing the vector of weights for the observation. 

Default: all observations have equal weights of 1.

Frequencies — Array containing the vector of frequencies for the observation. 

Default: all observations have a frequency of 1.

Missing_Val — Scalar integer which defines the method used to exclude miss-
ing values in x from the computations, where NaN is interpreted as the missing 
value code.

The methods are as follows:

Output Keywords

Means — Named variable into which the array containing the means of the 
variables in x is stored. The i-th components of the array correspond to x(*, i).

Stdev_Correlation correlation matrix, except for diagonal elements 
which are standard deviations

Missing_Val Action

0 The exclusion is listwise. (The entire row of x is 
excluded if any of the values of the row is equal to 
the missing value code.) 

1 Raw crossproducts are computed from all valid pairs 
and means, and variances are computed from all valid 
data on the individual variables. Corrected crossprod-
ucts, covariances, and correlations are computed 
using these quantities.

2 Raw crossproducts, means, and variances are com-
puted as in the case of Missing_Val = 1. However, 
corrected crossproducts and covariances are computed 
only from the valid pairs of data. Correlations are 
computed using these covariances and the variances 
from all valid data.

3 Raw crossproducts, means, variances, and covari-
ances are computed as in the case of Missing_Val = 2. 
Correlations are computed using these covariances, 
but the variances used are computed from the valid 
pairs of data.

Keyword Type of Matrix
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Nmissing — Specifies a variable into which the total number of observations 
that contain any missing values (NaN) is stored. 

Incidence_Mat — Named variable into which the incidence matrix is stored. If 
Missing_Val is 0, the number of valid observations is returned through this key-
word; otherwise, the nvar x nvar matrix, where nvar is the number of variables 
in x, contains the number of pairs of valid observations used in calculating the 
crossproducts for covariance.

Nobs — Named variable into which the sum of the frequencies is stored. If 
Missing_Val is 0, observations with missing values are not included in Nobs; 
otherwise, all observations are included except for observations with missing 
values for the weight or the frequency.

Sum_weights — Specifies a variable into which the sum of the weights of all 
observations is stored. If keyword Missing_val is equal to 0, observations with 
missing values are not included in Sum_weights. Otherwise, all observations are 
included except for observations with missing values for the weight or the 
frequency. 

Discussion 

Function COVARIANCES computes estimates of correlations, covariances, or 
sum of squares and crossproducts for a data matrix x. The means, (corrected) 
sum of squares, and (corrected) sums of crossproducts are computed using the 
method of provisional means. 

Let

 

denote the mean based on i observations for the k-th variable, fi and wi denote 
the frequency and weight of the i-th observation, respectively, and let cjki denote 
the sum of crossproducts (or sum of squares if j = k) based on i observations. 
Then, the method of provisional means finds new means and sums of 
crossproducts shown in the example below. 

The means and crossproducts are initialized as

   

    

xki

xk0 0.0= k 0 … p 1–, ,=

cjk0 0.0= j k, 0 … p 1–, ,=



COVARIANCES Function  193

where p denotes the number of variables. Letting xk, i + 1 denote the k-th vari-
able on observation i + 1, each new observation leads to the following updates 
for

 

and cjki using update constant r i + 1:

Usage Notes

Function COVARIANCES uses the following definition of a sample mean:

where nr is the number of cases. The formula below defines the sample covari-
ance, sjk , between variables j and k.

The sample correlation between variables j and k, rjk , is defined below.

xki

ri 1+

fi 1+ wi 1+

fjwjj 1=

i 1+∑
----------------------=

xk i 1+, xki xk i 1+, xki–( )ri 1++=

cjk i 1+, cjki fi 1+ wi 1+ xj i 1+, xji–( ) xk i 1+, xki–( ) 1 ri 1+–( )+=

xk

fiwixki
i 1=

nr∑
fiwi

i 1=

nr∑
------------------------------=

sjk

fiwi xji xj–( ) xki xk–( )
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∑
fi

n

∑ 
  1–

------------------------------------------------------------------=

rjk

sjk

sjjskk

---------------=



194  Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

Example

This example illustrates the use of COVARIANCES for the first 50 observa-
tions in the Fisher iris data (Fisher 1936). Note that the first variable is constant 
over the first 50 observations.

x = STATDATA(3)

x = x(0:49, *) 

cov = COVARIANCES(x)

; Call COVARIANCES. 

PM, cov

; Output the results. 

0.00000 0.00000 0.00000 0.00000 0.00000 

0.00000 0.124249 0.0992163 0.0163551 0.0103306

0.00000 0.0992163 0.143690 0.0116980 0.00929796

0.00000 0.0163551 0.0116980 0.0301592 0.00606939

0.00000 0.0103306 0.00929796 0.00606939 0.0111061

Warning Errors

STAT_CONSTANT_VARIABLE — Correlations are requested, but the observa-
tions on one or more variables are constant. The corresponding correlations are 
set to NaN. 

PARTIAL_COV Function 
Computes partial covariances or partial correlations from the covariance or cor-
relation matrix.

Usage

result = PARTIAL_COV(n_independent, n_dependent, x)

Input Parameters

n_independent — Number of “independent” variables to be used in the partial 
covariances/correlations. The partial covariances/correlations are the covarianc-
es/correlations between the dependent variables after removing the linear effect 
of the independent variables.

n_dependent — Number of variables for which partial covariances/correlations 
are desired (the number of “dependent” variables).
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x — The n by n covariance or correlation matrix, where n = n_independent + 
n_dependent. The rows/columns must be ordered such that the first 
n_independent rows/columns contain the independent variables, and the last 
n_dependent rows/columns contain the dependent variables. Array x must al-
ways be square symmetric. 

Returned Value 

result — Array of size n_dependent by n_dependent containing the partial co-
variances (the default) or partial correlations (set keyword Corr).

Input Keywords

Double — If present and nonzero, double precision is used.

Indices — An array containing values indicating the status of the variable as in 
the following table:

Default: The first n_independent elements of Indices are equal to 1, and 
the last n_dependent elements are equal to 0.

Cov — If present and nonzero, then partial covariances are calculated. (De-
fault) Keywords Cov and Corr can not be used together.

Corr — If present and nonzero, then partial correlations are calculated. Key-
words Cov and Corr can not be used together.

Input/Output Keywords

Df — On input, an integer indicating the number of degrees of freedom associ-
ated with input array x.  If the number of degrees of freedom in x varies from 
element to element, then a conservative choice for Df is the minimum degrees 
of freedom for all elements in x. 

Upon output, named variable into which the number of degrees of freedom in 
the test that the partial covariances/correlations are zero is stored. This value 
will usually be Df − n_independent, but will be greater than this value if the in-
dependent variables are computationally linearly related. Keywords Df and 

Indices(i) Variable is...

−1 not used in analysis

 0 dependent variable

1 independent variable
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Pvals must be used together.

Output Keywords

Pvals — Named variable into which an array of size n_dependent by 
n_dependent containing the p-values for testing the null hypothesis that the as-
sociated partial covariance/correlation is zero is stored. It is assumed that the 
observations from which x was computed flows a multivariate normal distribu-
tion and that each element in x has Df degrees of freedom. Keywords Df and 
Pvals must be used together.

Discussion

Function PARTIAL_COV computed partial covariances or partial correlations 
from an input covariance or correlation matrix. If the “independent” variables 
(the linear “effect” of the independent variables is removed in computing the 
partial covariances/correlations) are linearly related to one another, 
PARTIAL_COV detects the linearity and eliminates one or more of the inde-
pendent variables from the list of independent variables. The number of vari-
ables eliminated, if any, can be determined from keyword Df.

Given a covariance or correlation matrix Σ partitioned as 

function PARTIAL_COV computed the partial covariances (of the standardized 
variables if Σ is a correlation matrix) as 

If partial correlations are desired, these are computed as 

Σ Σ
Σ Σ

11 12

21 22
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��

Σ Σ Σ Σ Σ22 1 22 21 11
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12/ = − −

P diag diag22 1 22 1
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where diag denotes the matrix containing the diagonal of its argument along its 
diagonal with zeros off the diagonal. If Σ11 is singular, then as many variables 
as required are deleted from Σ11 (and Σ12) in order to eliminate the linear de-
pendencies. The computations then proceed as above.

The p-value for a partial covariance tests the null hypothesis H0: σij|1 = 0, where 
σij|1 is the (i, j) element in matrix Σ22|1. The p-value for a partial correlation 
tests the null hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in matrix 
P22|1. The p-values are returned in Pvals. If the degrees of freedom for x, Df, is 
not known, the resulting p-values may be useful for comparison, but they 
should not be used as an approximation to the actual probabilities.

Example 1

The following example computes partial covariances, scaled from a nine-vari-
able correlation matrix originally given by Emmett (1949). The first three rows 
and columns contain the independent variables and the final six rows and col-
umns contain the dependent variables.

x  =  TRANSPOSE([ $

[6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363], 
$

[3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077], 
$

[1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673], 
$

[3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910], 
$

[1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687], 
$

[2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754], 
$

[2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309], 
$

[1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458], 
$

[4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400]])

pcov  =  PARTIAL_COV(3, 6, x)

PM, pcov, Format = "(6F10.3)", Title = ’Partial Covariances’

Partial Covariances

     0.000     0.000     0.000     0.000     0.000     0.000

     0.000     0.000     0.000     0.000     0.000     0.000

     0.000     0.000     0.000     0.000     0.000     0.000
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     0.000     0.000     0.000     5.495     1.895     3.084

     0.000     0.000     0.000     1.895     1.841     1.476

     0.000     0.000     0.000     3.084     1.476     3.403

Example 2

The following example computes partial correlations from a 9 variable correla-
tion matrix originally given by Emmett (1949). The partial correlations be-
tween the remaining variables, after adjusting for variables 1, 3 and 9, are 
computed. 

x = TRANSPOSE([ $

[1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639], $

[0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645], $

[0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504], $

[0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505], $

[0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409], $

[0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472], $

[0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68], $

[0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47], $

[0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0]])

df  =  30

indices  =  [1, 0, 1, 0, 0, 0, 0, 0, 1]

pcov  =  PARTIAL_COV(3, 6, x, Indices = indices, Df = df, $

                       Pvals = pvals, /Corr)

PRINT, ’Degrees Of Freedom: ’, df

Degrees Of Freedom:           27

PM, pcov, Format = ’(6F10.3)’, Title = ’Partial Correlations’

Partial Correlations

     1.000     0.224     0.194     0.211     0.125    -0.061

     0.224     1.000     0.605     0.720     0.092     0.025

     0.194     0.605     1.000     0.598     0.123    -0.077

     0.211     0.720     0.598     1.000     0.035     0.086

     0.125     0.092     0.123     0.035     1.000     0.062

    -0.061     0.025    -0.077     0.086     0.062     1.000

PM, pvals, Format = ’(6F10.4)’, Title = ’P values’

P values

    0.0000    0.2525    0.3232    0.2801    0.5249    0.7576

    0.2525    0.0000    0.0006    0.0000    0.6417    0.9000

    0.3232    0.0006    0.0000    0.0007    0.5328    0.6982

    0.2801    0.0000    0.0007    0.0000    0.8602    0.6650
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    0.5249    0.6417    0.5328    0.8602    0.0000    0.7532

    0.7576    0.9000    0.6982    0.6650    0.7532    0.0000

Warning Errors

STAT_NO_HYP_TESTS — The input matrix “x” has # degrees of freedom, 
and the rank of the dependent variables is #. There are not enough degrees of 
freedom for hypothesis testing. The elements of “Pvals” are set to NaN (not a 
number).

Fatal Errors

STAT_INVALID_MATRIX_1 — The input matrix “x” is incorrectly specified. 
A computed correlation is greater than 1 for variables # and #.

STAT_INVALID_PARTIAL — A computed partial correlation for variables 
# and # is greater than 1. The input matrix “x” is not positive semi-definite.

POOLED_COV Function 
Compute a pooled variance-covariance from the observations.

Usage

result = POOLED_COV(x, ngroups)

Input Parameters

x — Two-dimensional array containing the data. The first n_variables = 
(N_ELEMENTS(x(0,*)) – 1) columns correspond to the variables, and the last 
column must contain the group numbers.

ngroups — Number of groups in the data.

Returned Value

result — Two-dimensional array containing the matrix of covariances.

Input Keywords

Double — If present and nonzero, double precision is used.

Idx_Cols — One-dimensional array containing the indices of the variables to be 
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used in the analysis.

Idx_Vars — Three element array indicating the column numbers of x in which 
particular types of data are stored. Columns are numbered 0 ... 
N_ELEMENTS(Idx_Cols) − 1.

Idx_Vars(0) contains the index for the column of x in which the group 
numbers are stored.

Idx_Vars(1) and Idx_Vars(2) contain the column numbers of x in which 
the frequencies and weights, respectively, are stored. Set Idx_Vars(1) = 
−1 if there will be no column for frequencies. Set Idx_Vars(2) = −1 if 
there will be no column for weights. Weights are rounded to the near-
est integer. Negative weights are not allowed.

Defaults: Idx_Cols = 0, 1, …, n_variables – 1,

               Idx_Vars(0) = n_variables,  

               Idx_Vars(1) = −1, and

               Idx_Vars(2) = −1

Output Keywords

Gcounts — Named variable into which the array of length n_groups containing 
the number of observations in each group is stored.

Sum_Weights — Named variable into which the array of length n_groups con-
taining the sum of the weights times the frequencies in the groups is stored.

Means — Named variable into which the array of size n_groups by n_variables 
in which the i-th row of Means contains the group i variable means is stored.

U — Named variable into which the array of size n_variables by n_variables 
containing the lower matrix U, the lower triangular for the pooled sample cross-
products matrix is stored. U is computed from the pooled sample covariance 
matrix, S (See the Discussion section), as S = UTU.

Nmissing — Named variable into which the number of rows of data containing 
missing values (NaN) for any of the variables used is stored. 

Discussion

Function POOLED_COV computes the pooled variance-covariance matrix from 
a matrix of observations. The within-groups means are also computed. Listwise 
deletion of missing values is assumed so that all observations used are com-
plete; in any row of x, if any element of the observation is missing, the row is 
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not used. Function POOLED_COV should be used whenever the user suspects 
that the data has been sampled from populations with different means but iden-
tical variance-covariance matrices. If these assumptions cannot be made, a dif-
ferent variance-covariance matrix should be estimated within each group.

If N_ELEMENTS(x(*,0)) ( 0, the group observation totals, Ti, for i = 1, …, g, 
where g is the number of groups, are updated for the N_ELEMENTS(x(*,0)) ob-
servations in x. The group totals are computed as:

where wij is the observation weight, xij is the j-th observation in the i-th group, 
and fij is the observation frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of 
the pooled sums of squares and crossproducts matrix. (Golub and Van Loan 
1983).

The group means and the pooled sample covariance matrix S are computed 
from the intermediate results. These quantities are defined by
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Example

The following example computes a pooled variance-covariance matrix. The last 
column of the data set is the group indicator.

ngroups  =  2

x  =  TRANSPOSE([[2.2, 5.6, 1], $

                 [3.4, 2.3, 1], $

                 [1.2, 7.8, 1], $

                 [3.2, 2.1, 2], $

                 [4.1, 1.6, 2], $

                 [3.7, 2.2, 2]])

cov  =  POOLED_COV(x, ngroups)

PM, cov, Format = "(2F10.3)", Title = "Pooled Covariance Matrix"

Pooled Covariance Matrix

     0.708    -1.575

    -1.575     3.883

Warning Errors

STAT_OBSERVATION_IGNORED — In call #, row # of the matrix “x” has 
group number = #. The group number must be between 1 and #, the number of 
groups. This observation will be ignored.

ROBUST_COV Function 
Computes a robust estimate of a covariance matrix and mean vector.

Usage

result = ROBUST_COV(x, n_groups)

Input Parameters

x — Two-dimensional array of size nrows by (n_variables + 1) containing the 
data where nrows = N_ELEMENTS(x(*,0)) and n_variables = 
(N_ELEMENTS(x(0,*)) – 1). The first n_variables columns correspond to the 
variables, and the last column must contain the group numbers.

n_groups — Number of groups in the data.
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Returned Value

result — Two-dimensional array containing the matrix of covariances.

Input Keywords

Double — If present and nonzero, double precision is used.

Idx_Cols — One-dimensional array containing the indices of the variables to be 
used in the analysis.

Idx_Vars — Three element array indicating the column numbers of x in which 
particular types of data are stored. Columns are numbered 0 ... 
N_ELEMENTS(Idx_Cols) − 1.

Idx_Vars(0) contains the index for the column of x in which the group 
numbers are stored.

Idx_Vars(1) and Idx_Vars(2) contain the column numbers of x in which 
the frequencies and weights, respectively, are stored. Set Idx_Vars(1) = 
−1 if there will be no column for frequencies. Set Idx_Vars(2) = −1 if 
there will be no column for weights. Weights are rounded to the near-
est integer. Negative weights are not allowed.

Defaults: Idx_Cols = 0, 1, …, n_variables - 1,

               Idx_Vars(0) = n_variables,  

               Idx_Vars(1) = −1, and

               Idx_Vars(2) = −1

Mean_Est — Two-dimensional array of size n_groups by n_variables contain-
ing initial estimates for the mean. Keywords Mean_Est and Cov_Est must be 
used together. Keywords Init_Est_Mean, Init_Est_Median, and Mean_Est can 
not be used together.

Cov_Est — Two-dimensional array of size n_variables by n_variables contain-
ing the estimate of the covariance matrix. Keywords Mean_Est and Cov_Est 
must be used together. 

Init_Est_Mean — If present and nonzero, initial estimates are obtained as the 
usual estimate of a mean vector and of a covariance matrix. Keywords 
Init_Est_Mean, Init_Est_Median, and Mean_Est can not be used together.

Init_Est_Median — If present and nonzero, initial estimates based upon the 
median and interquartile range must be used. Keywords Init_Est_Mean, 
Init_Est_Median, and Mean_Est can not be used together.
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Stahel — If present and nonzero, the Stahel’s algorithm is used. Keywords Sta-
hel and Huber can not be used together.

Huber — If present and nonzero, Huber’s conjugate-gradient algorithm is used. 
Keywords Stahel and Huber can not be used together.

Percentage — Percentage of gross errors expected in the data. Keyword Per-
centage must be in the range 0.0 to 100.0 and contains the percentage of outli-
ers expected in the data. If the percentage of gross errors expected in the data is 
not known, a reasonable strategy is to choose a value of Percentage that is such 
that larger values do not result in significant changes in the estimates.

Default: Percentage = 5.0

Itmax — Maximum number of iterations.

Default: Itmax = 30

Tolerance — Convergence criterion. When the maximum absolute change in a 
location or covariance estimate is less than Tolerance, convergence is assumed.

Default: Tolerance =  10−4

Output Keywords

Minimax_Weights — Named variable into which the one-dimensional array 
containing the values for the parameters of the weighting function is stored. See 
the Discussion section for details.

Group_Counts — Named variable into which the one-dimensional array of 
length n_groups containing the number of observations in each group is stored.

Sum_Weights — Named variable into which the one-dimensional array of 
length n_groups containing the sum of the weights times the frequencies in the 
groups is stored.

Means — Named variable into which the array of size n_groups by n_variables 
is stored. The i-th row of Means contains the group i variable means.

U — Named variable into which an array of size n_variables by n_variables 
containing the lower matrix U, the lower triangular for the robust sample cross-
products matrix is stored. U is computed from the robust sample covariance ma-
trix, S (See the Discussion section), as S = UTU.

Beta — Named variable into which the constant used to ensure that the estimat-
ed covariance matrix has unbiased expectation (for a given mean vector) for a 
multivariate normal density is stored.

Nmissing — Named variable into which the number of rows of data containing 
missing values (NaN) for any of the variables used is stored. 
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Discussion

Function ROBUST_COV computes robust M-estimates of the mean and covari-
ance matrix from a matrix of observations. A pooled estimate of the covariance 
matrix is computed when multiple groups are present in the input data. M-esti-
mate weights are obtained using the “minimax” weights of Huber (1981, pp. 
231-235), with Percentage expected gross errors. Huber’s (1981) weighting 
equations are given by:

User specified observation weights and frequencies may be given for each row 
in x. Listwise deletion of missing values is assumed so that all observations 
used are “complete”. 

Let f (x;µi, Σ) denote the density of an observation p-vector x in population 
(group) i with mean vector µi, for i = 1, …, τ. Let the covariance matrix Σ be 

such that Σ = RTR. If 

y = R−Τ (x − µi)

then

It is assumed that g(y) is a spherically symmetric density in p-dimensions.
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In ROBUST_COV, Σ and µi are estimated as the solutions

of the estimation equations

and

where i indexes the τ groups, ni, is the number of observations in group i, fij is 
the frequency for the j-th observation in group i, wij is the observation weight 
specified in column Idx_Vars(2) of x, Ip is a p by p identity matrix,

w(r) and u(r) are the weighting functions, and where β is a constant computed 
by the program to make the expected weighted Mahalanobis distance (yTy) 
equal the expected Mahalanobis distance from a multivariate normal distribution 
(see Marazzi 1985). The constant β is described more fully below.

Function ROBUST_COV uses one of two algorithms for solving the estimation 
equations. The first algorithm is discussed in detail in Huber (1981) and is a 
variant of the conjugate gradient method. The second algorithm is due to Stahel 
(1981) and is discussed in detail by Marazzi (1985). In both algorithms, correc-
tion vectors Tki for the group i means and correction matrix Wk = Ip + Uk for the 
Cholesky factorization of S are found such that the updated mean vectors are 
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given by 

and the updated matrix R is given as 

where k is the iteration number and 

When all elements of Uk and Tki are less than ε = Tolerance, convergence is as-
sumed.

Three methods for obtaining estimates are allowed. In the first method, the sam-
ple weighted estimate of Σ is computed. In the second method, estimates based 
upon the median and the interquartile range are used. Finally, in the last meth-
od, the user inputs initial estimates. 

Function ROBUST_COV computes estimates based on the “minimax” weights 
discussed above. The constant β is chosen such that E (u(r)r2) = ρβ where the 
expectation is with respect to a standard p-variate multivariate normal distribu-
tion. This yields estimates with the correct expectation for the multivariate nor-
mal distribution (for given mean vector). The expectation is computed via 
integration of estimated spline function. 200 knots are used on an equally 
spaced grid from 0.0 to the 99.999 percentile of 

distribution. An error estimate is computed based upon 100 of these knots. If 
the estimated relative error is greater than 0.0001, a warning message is issued. 
If β is not computed accurately (i.e., if the warning message is issued), the com-
puted estimates are still optimal, but the scale of the estimated covariance ma-
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trix may need to be multiplied by a constant in order for

to have the correct multivariate normal covariance expectation.

Example 1

The following example computes a robust variance-covariance matrix. The last 
column of the data set is the group indicator.

n_groups  =  2

x  =  TRANSPOSE([[2.2, 5.6, 1.0], $

                 [3.4, 2.3, 1.0], $

                 [1.2, 7.8, 1.0], $ 

                 [3.2, 2.1, 2.0], $

                 [4.1, 1.6, 2.0], $

                 [3.7, 2.2, 2.0]])

cov  =  ROBUST_COV(x, n_groups)

PM, cov, Title ="Robust Covariance Matrix"

Robust Covariance Matrix

     0.522022     -1.16027

     -1.16027      2.86203

Example 2

The following example computes estimates of the pooled covariance matrix for 
the Fisher’s iris data. For comparison, the estimates are first computed via func-
tion POOLED_COV.  Function ROBUST_COV with  Percentage = 2.0 is then 
used to compute the robust estimates. As can be seen from the output, the re-
sulting estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are com-
puted using functions POOLED_COV and ROBUST_COV.  When outliers are 
present, the estimates of POOLED_COV are adversely affected, while the esti-
mates produced by ROBUST_COV are close to the estimates produced when 
no outliers are present.

n_groups  =  3

idxv  =  [1, 2, 3, 4]

idxc  =  [0, -1, -1]

percentage  =  2.0

x  =  STATDATA(3)

$Σ
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p_cov  =  POOLED_COV(x, n_groups, Idx_Vars = idxv, $

                     Idx_Cols = idxc)

PM, p_cov, Title = "Pooled Cavariance with No Outliners"

Pooled Cavariance with No Outliners

     0.265008    0.0927211     0.167514    0.0384014

    0.0927211     0.115388    0.0552436    0.0327102

     0.167514    0.0552436     0.185188    0.0426653

    0.0384014    0.0327102    0.0426653    0.0418816

r_cov  =  ROBUST_COV(x, n_groups, Idx_Vars = idxv, $

                    Idx_Cols = idxc, Percentage = percentage)

PM, r_cov, Title = "Robust Covariance with No Outliners"

Robust Covariance with No Outliners

     0.247410    0.0872090     0.153530    0.0359695

    0.0872090     0.107336    0.0538220    0.0321557

     0.153530    0.0538220     0.170550    0.0411720

    0.0359695    0.0321557    0.0411720    0.0401394
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CHAPTER

4

Analysis of Variance 
This chapter describes functions for analysis of variance models and for multi-
ple comparison methods for means. 

Contents of Chapter
Analyzes a one-way classification 
model ....................................................ANOVA1 Function

Analyzes a balanced factorial design 
with fixed effects ..........................  ANOVAFACT Function

Performs Student-Newman-Keuls 
multiple comparisons test............. MULTICOMP Function

Nested random model ................ ANOVANESTED Function

Balanced fixed, random, 
or mixed model..................  ANOVABALANCED Function

Introduction
The functions described in this chapter are for commonly-used experimental de-
signs. Typically, responses are stored in the input vector y in a pattern that takes 
advantage of the balanced design structure. Consequently, the full set of model 
subscripts is not needed to identify each response. The functions assume the 
usual pattern, which requires that the last model subscript change most rapidly, 
followed by the model subscript next in line, and so forth, with the first sub-
script changing at the slowest rate. This pattern is referred to as lexicographical 
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ordering.

Function ANOVA1 allows missing responses if confidence interval information 
is not requested. NaN (Not a Number) is the missing value code used by these 
functions. Use function MACHINE to retrieve NaN. Any element of y that is 
missing must be set to NaN. Other functions described in this chapter do not 
allow missing responses because the functions generally deal with balanced 
designs.

As a diagnostic tool for determination of the validity of a model, functions in 
this chapter typically perform a test for lack of fit when n (n > 1) responses are 
available in each cell of the experimental design. Functions in Chapter 2: Re-
gression are used for analysis of generalizations of the models treated in this 
chapter. In particular, Chapter 2: Regression, also provides functions for the 
general linear model.

ANOVA1 Function 
Analyzes a one-way classification model. 

Usage

result = ANOVA1(n, y)

Input Parameters

n — One-dimensional array containing the number of responses for each group.

y — One-dimensional array of length

 n(0) + n(1) + ...+ n(N_ELEMENTS(n) – 1) 

containing the responses for each group. 

Returned Value

result — The p-value for the F-statistic.

Input Keywords

Double — If present and nonzero, then double precision is used.
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Confidence — Confidence level for the simultaneous interval estimation. If 
Tukey is specified, Confidence must be in the range [90.0, 99.0); otherwise, 
Confidence is in the range [0.0, 100.0).

Default: Confidence = 95.0

Output Keywords

Anova_Table — Named variable into which the analysis of variance table is 
stored.

The analysis of variance statistics are as follows:

Group_Means — Named variable into which the array containing the group 
means is stored. 

Group_Std_Dev — Named variable into which the array containing the group 
standard deviations is stored. 

Group_Counts — Named variable into which the array containing the number 
of nonmissing observations for the groups is stored. 

Tukey or 
Dunn_Sidak or 

Element Analysis of Variance Statistics

0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value
10 R2 (in percent)
11 Adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)
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Bonferroni or 
Scheffe or 
One_At_A_Time — Named variable into which the array containing the statis-
tics relating to the difference of means is stored. On return, the named variable 
contains an array of size 

 

where ngroups = N_ELEMENTS(n).

Function ANOVA1 computes the confidence intervals on all pairwise differ-
ences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák, 
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, the 
Tukey confidence intervals are calculated if the group sizes are equal; other-
wise, the Tukey-Kramer confidence intervals are calculated.

Discussion

Function ANOVA1 performs an analysis of variance of responses from a one-
way classification design. The model is 

yij = µi + εij  i = 1, 2, ..., k;  j = 1, 2, ..., ni

where the observed value yij constitutes the j-th response in the i-th group, µi 
denotes the population mean for the i-th group, and the εij arguments are errors 
that are identically and independently distributed normal with mean 0 and vari-
ance σ2. Function ANOVA1 requires the yij observed responses as input into a 
single vector y with responses in each group occupying contiguous locations. 
The analysis of variance table is computed along with the group sample means 
and standard deviations. A discussion of formulas and interpretations for the 
one-way analysis of variance problem appears in most statistics texts, e.g., 
Snedecor and Cochran (1967, Chapter 10).

Column Description

0 group number for the i-th mean
1 group number for the j-th mean
2 difference of means (i-th mean) − ( j-th mean)
3 lower confidence limit for the difference
4 upper confidence limit for the difference

ngroups
2 

  5×
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Function ANOVA1 computes simultaneous confidence intervals on all

pairwise comparisons of k means µ1, µ2, ..., µk in the one-way analysis of vari-
ance model. Any of several methods can be chosen. A good review of these 
methods is given by Stoline (1981). The methods also are discussed in many 
statistics texts, e.g., Kirk (1982, pp. 114–127).

Let s2 be the estimated variance of a single observation. Let ν be the degrees of 
freedom associated with s2. Let

The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence 
intervals for all pairwise differences of means µi – µj in balanced (n1 = n2 = ... 
nk = n) one-way designs. The method is exact and uses the Studentized range 
distribution. The formula for the difference µi – µj is given by the following:

where  

is the (1 – α ) 100 percentage point of the Studentized range distribution with 
parameters k and ν.

Tukey-Kramer method: The Tukey-Kramer method is an approximate extension 
of the Tukey method for the unbalanced case. (The method simplifies to the 
Tukey method for the balanced case.) The method always produces confidence 
intervals narrower than the Dunn-Sidák and Bonferroni methods. Hayter (1984) 
proved that the method is conservative, i.e., the method guarantees a confi-
dence coverage of at least (1 – α) 100. Hayter’s proof gave further support to 
earlier recommendations for its use (Stoline 1981). (Methods that are currently 
better are restricted to special cases and only offer improvement in severely 

k ′
k k 1–( )

2
-------------------=

α 1
Confidence

100.0
---------------------------–=

yi yj– q1 α k ν,;–
s2

n
----±

q1 α k ν,;–



216  Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

unbalanced cases; see, for example, Spurrier and Isham 1985.) The formula for 
the difference µi – µj is given by the following:

Dunn- Sidák method: The Dunn-Sidák method is a conservative method. The 
method gives wider intervals than the Tukey-Kramer method. (For large ν and 
small α and k, the difference is only slight.) The method is slightly better than 
the Bonferroni method and is based on an improved Bonferroni (multiplicative) 
inequality (Miller 1980, pp. 101, 254–255). The method uses the t distribution 
(see function TCDF. The formula for the difference µi – µj is given by the 
following:

where tf;v 

is the 100f percentage point of the t distribution with ν degrees of freedom.

Bonferroni method: The Bonferroni method is a conservative method based on 
the Bonferroni (additive) inequality (Miller, p. 8). The method uses the t distri-
bution. The formula for the difference µi – µj is given by the following:

Scheffé method: The Scheffé method is an overly conservative method for 
simultaneous confidence intervals on pairwise difference of means. The method 
is applicable for simultaneous confidence intervals on all contrasts, i.e., all lin-
ear combinations
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where the following is true:

This method can be recommended here only if a large number of confidence 
intervals on contrasts, in addition to the pairwise differences of means, are to be 
constructed. The method uses the F distribution (see function FCDF. The for-
mula for the difference µi – µj is given by the following:

where

 

is the (1 – α) 100 percentage point of the F distribution with k – 1 and ν 
degrees of freedom. 

One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is 
appropriate for constructing a single confidence interval. The confidence per-
centage input is appropriate for one interval at a time. The method has been 
used widely in conjunction with the overall test of the null hypothesis µ1 = µ2 = 
... = µk by the use of the F statistic. Fisher’s LSD (least significant difference) 
test is a two-stage test that proceeds to make pairwise comparisons of means 
only if the overall F test is significant. Milliken and Johnson (1984, p. 31) rec-
ommend LSD comparisons after a significant F only if the number of 
comparisons is small and the comparisons were planned prior to the analysis. If 
many unplanned comparisons are made, they recommend Scheffé’s method. If 
the F test is insignificant, a few planned comparisons for differences in means 
can still be performed by using either Tukey, Tukey-Kramer, Dunn-Sidák, or 
Bonferroni methods. Because the F test is insignificant, Scheffé’s method does 
not yield any significant differences. The formula for the difference µi – µj is 
given by the following:
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Example 1

This example computes a one-way analysis of variance for data discussed by 
Searle (1971, Table 5.1, pp. 165–179). The responses are plant weights for six 
plants of three different types—three normal, two off-types, and one aberrant. 

n = [3,2,1] 

y = [101.0, 105.0, 94.0, 84.0, 88.0, 32.0] 

PRINT,’p-value = ’, ANOVA1(n, y) 

p-value = 0.00276887

Example 2: Multiple Comparisons

Simultaneous confidence intervals are generated for the following measure-
ments of cold-cranking power for five models of automobile batteries. Nelson 
(1989, pp. 232–241) provided the data and approach.

The Tukey method is chosen for the analysis of pairwise comparisons, with a 
confidence level of 99 percent. The means and their confidence limits are out-
put. First, a procedure to print out the results is defined.

PRO print_results, anova_table, diff_means 

anova_labels = ["df for among groups", $

"df for within groups", $

"total (corrected) df", $

"ss for among groups", $

"ss for within groups", $

Normal Off-Type Aberrant

101 84 32

105 88

94

Model 1 Model 2 Model 3 Model 4 Model 5

41 42 27 48 28

43 43 26 45 32

42 46 28 51 37

46 38 27 46 25
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"total (corrected) ss", $

"mean square among groups", $

"mean square within groups", $

"F-statistic", $

"P-value", $

"R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. std of within group error", $

"overall mean of y", $

"coef. of variation (in percent)"] 

PRINT, " * *Analysis of Variance * *" 

FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), Format = ’(a40,f20.2)’ 

PRINT

; Print the analysis of variance table. 

PRINT, " * *Differences of Means * *" 

PRINT, " groups", " difference", " lower limit", " upper limit" 

PM, diff_means, Format = $

’(2i3, x, f9.2, 4x, f9.2, 5x, f9.2)’ 

; Print the differences of means. 

END

n = [4, 4, 4, 4, 4] 

y = [41, 43, 42, 46, $

42, 43, 46, 38, $

27, 26, 28, 27, $

48, 45, 51, 46, $

28, 32, 37, 25] 

p_value = ANOVA1(n, y, Confidence = 99.0, $

Anova_Table = anova_table, $

Tukey = diff_means) 

; Call ANOVA1. 

print_results, anova_table, diff_means 

; Output the results. 

* *Analysis of Variance * * 

df for among groups 4.00 

df for within groups 15.00 

total (corrected) df 19.00 

ss for among groups 1242.20 

ss for within groups 150.75 
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total (corrected) ss 1392.95 

mean square among groups 310.55 

mean square within groups 10.05 

F-statistic 30.90 

P-value 0.00 

R-squared (in percent) 89.18 

adjusted R-squared (in percent) 86.29 

est. std of within group error 3.17 

overall mean of y 38.05 

coef. of variation (in percent) 8.33 

* *Differences of Means * * 

groups   difference   lower limit   upper limit 

 1  2      0.75        -8.05          9.55 

 1  3     16.00         7.20         24.80 

 1  4     -4.50       -13.30          4.30 

 1  5     12.50         3.70         21.30 

 2  3     15.25         6.45         24.05 

 2  4     -5.25       -14.05          3.55 

 2  5     11.75         2.95         20.55 

 3  4    -20.50       -29.30        -11.70 

 3  5     -3.50       -12.30          5.30 

 4  5     17.00         8.20         25.80
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ANOVAFACT Function 
Analyzes a balanced factorial design with fixed effects.

Usage

result = ANOVAFACT(n_levels, y)

Input Parameters

n_levels — One-dimensional array containing the number of levels for each of 
the factors and the number of replicates for each effect.

y — One-dimensional array of length

n_levels (0) * n_levels (1) * ... * ((N_ELEMENTS (n_levels) – 1))

containing the responses. Parameter y must not contain NaN for any of its ele-
ments, i.e., missing values are not allowed.

Returned Value

result — The p-value for the overall F-test.

Input Keywords

Double — If present and nonzero, then double precision is used. 

Order — Number of factors included in the highest-way interaction in the 
model. Order must be in the interval [1, N_ELEMENTS (n_levels) – 1]. For 
example, an Order of 1 indicates that a main-effect model is analyzed, and an 
Order of 2 indicates that two-way interactions are included in the model. 

Default: Order = N_ELEMENTS(n_levels) – 1)

Pure_Error 
Pool_Inter — If present and nonzero, Pure_Error (the default option) indicates 
all the main effect and the interaction effects involving the replicates, the last 
element in n_levels, are pooled together to create the error term. The Pool_Inter 
option indicates  (Order + 1)-way and higher-way interactions are pooled 
together to create the error. Keywords Pure_Error and Pool_Inter cannot be 
used together. 
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Output Keywords

Anova_Table — Named variable into which an array of size 15 containing the 
analysis of variance table is stored. The analysis of variance statistics are given 
as follows: 

Test_Effects — Named variable into which an array of size nef x 4 containing 
statistics relating to the sums of squares for the effects in the model is stored. 
Here,

 

where n is given by N_ELEMENTS(n_levels) if Pool_Inter is specified; other-
wise, N_ELEMENTS(n_levels) – 1. 

Element Analysis of Variance Statistics

0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

nef
n
1 

  n
2 

  ...
n

min(n, Order ) 
 + + +=
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Suppose the factors are A, B, C, and error. With Order = 3, rows 0 through nef 
– 1 correspond to A, B, C, AB, AC, BC, and ABC. The columns of Test_Effects 

are as follows:

Means — Named variable into which an array of length 
(n_levels(0) + 1) x (n_levels(1) + 1) x ... ... x (n_levels(n–1) + 1) containing the 
subgroup means is stored. 

See keyword Test_Effects for a definition of n. If the factors are A, B, C, and 
replicates, the ordering of the means is grand mean, A means, B means, C 
means, AB means, AC means, BC means, and ABC means.

Discussion

Function ANOVAFACT performs an analysis for an n-way classification design 
with balanced data. For balanced data, there must be an equal number of 
responses in each cell of the n-way layout. The effects are assumed to be fixed 
effects. The model is an extension of the two-way model to include n factors. 
The interactions (two-way, three-way, up to n-way) can be included in the 
model, or some of the higher-way interactions can be pooled into error. The 
keyword Order specifies the number of factors to be included in the highest-
way interaction. For example, if three-way and higher-way interactions are to be 
pooled into error, set Order = 2. 

By default, Order = N_ELEMENTS (n_levels) – 1 with the last subscript being 
the replicates subscript. Keyword Pure_Error indicates there are repeated 
responses within the n-way cell; Pool_Inter indicates otherwise.

Function ANOVAFACT requires the responses as input into a single vector y in 
lexicographical order, so that the response subscript associated with the first 
factor varies least rapidly, followed by the subscript associated with the second 
factor, and so forth. Hemmerle (1967, Chapter 5) discusses the computational 
method.

Column Description

0 degrees of freedom
1 sum of squares
2 F-statistic
3 p-value
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Example 1

A two-way analysis of variance is performed with balanced data discussed by 
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the 
weight gains (in grams) of rats that were fed diets varying in the source (A) and 
level (B) of protein.

The model is 

for ; ; 

where

for 

for i = 0, 1. The first responses in each cell in the two-way layout are given in 
the following table:

n = [3, 2, 10] 

y = [73.0, 102.0, 118.0, 104.0,  81.0, $

107.0, 100.0,  87.0, 117.0, 111.0,$

90.0, 76.0, 90.0, 64.0, 86.0,$

Protein Level (B) Protein Source (A)

Beef Cereal Pork

High 73, 102, 118, 104, 
81, 107, 100, 87, 
117, 111

98, 74, 56, 111, 95, 
88, 82, 77, 86, 92

94, 79, 96, 98, 102, 
102, 108, 91, 120, 
105

Low 90, 76, 90, 64, 86, 
51, 72, 90, 95, 78

107, 95, 97, 80, 98, 
74, 74, 67, 89, 58

49, 82, 73, 86, 81, 
97, 106, 70, 61, 82

yijk µ αi βj γij εijk+ + + +=

i 0 1,= j 0 1 2, ,= k 0 1 … 9, , ,=

α i

i 0=

1

∑ 0 βj

j 0=

2

∑; 0 γij

i 0=

1

∑; 0= = =

j 0 1 2 and, ,=

γ ij

j 0=

2

∑ 0=
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51.0, 72.0, 90.0, 95.0, 78.0,$

98.0, 74.0, 56.0, 111.0, 95.0,$

88.0, 82.0, 77.0, 86.0, 92.0,$

107.0, 95.0, 97.0, 80.0, 98.0, $

74.0, 74.0, 67.0, 89.0, 58.0,$

94.0, 79.0, 96.0, 98.0, 102.0, $

102.0, 108.0, 91.0, 120.0, 105.0, $

49.0, 82.0, 73.0, 86.0, 81.0,$

97.0, 106.0, 70.0, 61.0, 82.0] 

p_value = ANOVAFACT(n, y, $

Anova_Table = anova_table) 

PRINT, "p-value = ", p_value 

p-value =    0.00229943

Example 2: Two-way ANOVA 

In this example, the same model and data are fit as in the initial example, but 
keywords are used for a more complete analysis. First, a procedure to output the 
results is defined.

PRO print_results, anova_table, test_effects, means 

anova_labels = ["df for among groups", $

"df for within groups", $

"total (corrected) df", $

"ss for among groups", $

"ss for within groups", $

"total (corrected) ss", $

"mean square among groups", $

"mean square within groups", $

"F-statistic", $

"P-value", $

"R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. std of within group error", $

"overall mean of y", $

"coef. of variation (in percent)"] 

effects_labels = ["A  ", "B  ", "A*B"] 

means_labels = ["grand", "A1", "A2", $

"A3", "B1", "B2", "A1*B1", "A1*B2", $

"A2*B1", "A2*B2", "A3*B1", "A3*B2"] 

PRINT, "       * *Analysis of Variance * *" 
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FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), Format = ’(a40,f15.2)’ 

PRINT 

; Print the analysis of variance table. 

PRINT, "     * * Variation Due to the Model * *" 

PRINT, "Source    DF      SS      MS      P-value" 

FOR i = 0, 2 DO PM, effects_labels(i), $

test_effects(i, *) 

PRINT 

; Print the statistics for effects. 

PRINT, " * * Subgroup Means * *" 

FOR i = 0, 11 DO PM, means_labels(i), $

means(i), Format = ’(a5,f15.2)’ 

; Print the means. 

END

n = [3, 2, 10] 

y = [73.0, 102.0, 118.0, 104.0, 81.0, $

107.0, 100.0, 87.0, 117.0, 111.0,$

90.0, 76.0, 90.0,  64.0, 86.0,$

51.0, 72.0, 90.0,  95.0,  78.0,$

98.0, 74.0, 56.0, 111.0, 95.0,$

88.0, 82.0, 77.0,  86.0,  92.0, $

107.0, 95.0, 97.0, 80.0, 98.0,$

74.0, 74.0, 67.0,  89.0,  58.0,$

94.0, 79.0, 96.0,  98.0, 102.0, $

102.0, 108.0, 91.0, 120.0, 105.0,$

49.0, 82.0, 73.0, 86.0, 81.0,$

97.0, 106.0, 70.0, 61.0, 82.0] 

p_value = ANOVAFACT(n, y, $

Anova_Table = anova_table, $

Test_Effects = test_effects, Means = means) 

print_results, anova_table, test_effects, $

means 

 * *Analysis of Variance * *

df for among groups 5.00

df for within groups 54.00

total (corrected) df 59.00

ss for among groups 4612.93

ss for within groups 11586.00

total (corrected) ss 16198.93
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mean square among groups 922.59

mean square within groups 214.56

F-statistic 4.30

P-value 0.00

R-squared (in percent) 28.48

adjusted R-squared (in percent) 21.85

est. std of within group error 14.65

overall mean of y 87.87

coef. of variation (in percent) 16.67

 * * Variation Due to the Model * * 

Source      DF      SS        MS       P-value

A      2.00000  266.533 0.621128  0.541132 

B       1.00000  3168.27  14.7667  0.000322342

A*B     2.00000  1178.13 2.74552   0.0731880

 * * Subgroup Means * * 

grand          87.87 

 A1         89.60 

 A2          84.90 

 A3          89.10 

 B1          95.13 

 B2         80.60 

A1*B1         100.00 

A1*B2          79.20 

A2*B1          85.90 

A2*B2          83.90 

A3*B1          99.50 

A3*B2          78.70

Example 3: Three-way ANOVA

This example performs a three-way analysis of variance using data discussed by 
John (1971, pp. 91–92). The responses are weights (in grams) of roots of carrots 
grown with varying amounts of applied nitrogen (A), potassium (B), and phos-
phorus (C). Each cell of the three-way layout has one response. Note that the 
ABC interactions sum of squares (186) is given incorrectly by John (1971, 
Table 5.2.) 

The three-way layout is given in the following table:

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51
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PRO print_results, anova_table, $

test_effects, means 

anova_labels = ["df for among groups", $

"df for within groups", $

"total (corrected) df", $

"ss for among groups", $

"ss for within groups", $

"total (corrected) ss", $

"mean square among groups", $

"mean square within groups", $

"F-statistic", $

"P-value", $

"R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. std of within group error", $

"overall mean of y", $

"coef. of variation (in percent)"] 

effects_labels = ["A  ", "B  ", "C  ", "A*B", "A*B", "A*C"] 

PRINT, "       * *Analysis of Variance * *" 

FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), Format = ’(a40,f15.2)’ 

PRINT 

; Print the analysis of variance table. 

PRINT, "     * * Variation Due to the Model * *" 

PRINT, "Source      DF     SS       MS     P-value" 

FOR i = 0,5 DO PM, effects_labels(i), $

test_effects(i, *) 

; Print the statistics for effects. 

END

n = [3, 3, 3] 

y = [88.76, 87.45, 86.01, 91.41, $

98.27, 104.20, 97.85, $

95.85, 90.09, 94.83, 84.57, $

81.06, 100.49, 97.20, $

120.80, 99.75, 112.30, 108.77, $

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87

A0 A1 A2
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99.90, 92.98, 94.72, $

100.23, 107.77, 118.39, 104.51, $

110.94, 102.87] 

p_value = ANOVAFACT(n, y, Anova_Table = anova_table, $

Test_Effects = test_effects, /Pool_Inter) 

print_results, anova_table, test_effects 

 * *Analysis of Variance * * 

df for among groups 18.00

df for within groups 8.00

total (corrected) df 26.00

ss for among groups 2395.73

ss for within groups 185.78

total (corrected) ss 2581.51

mean square among groups 133.10

mean square within groups 23.22

F-statistic 5.73

p-value 0.01

R-squared (in percent) 92.80

adjusted R-squared (in percent) 76.61

est. std of within group error  4.82

overall mean of y 98.96

coef. of variation (in percent) 4.87

 * * Variation Due to the Model * * 

Source   DF     SS      MS       p-value 

A 2.00000 488.368 10.5152 0.00576699

B 2.00000 1090.66 23.4832 0.000448704

C 2.00000 49.1484 1.05823 0.391063

A*B 4.00000 142.586 1.53502 0.280423

A*B 4.00000 32.3474 0.348241 0.838336

A*C 4.00000 592.624 6.37997 0.0131252
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MULTICOMP Function 
Performs Student-Newman-Keuls multiple-comparisons test.

Usage

result = MULTICOMP(means, df, std_error)

Input Parameters

means — One-dimensional array containing the means. 

df — Degrees of freedom associated with std_error. 

std_error — Effective estimated standard error of a mean. In fixed effects mod-
els, std_error equals the estimated standard error of a mean. 

For example, in a one-way model,

where s2 is the estimate of σ2 and n is the number of responses in a sample 
mean. In models with random components, use

where sedif is the estimated standard error of the difference of two means.

Returned Value

result — A one-dimensional array of length N_ELEMENTS(means) indicating 
the size of the groups of means declared to be equal. If the i-th element of the 
returned array is equal to j, then the i-th smallest mean and the next j – 1 larger 
means are declared equal. If the i-th element of the returned array is equal to 0, 
then no group of means starts with the i-th smallest mean.

Input Keywords

Double — If present and nonzero, then double precision is used. 

std_error
s2

n
----=

std_error
sedif

2
-----------=
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Alpha — Significance level of test. Must be in the interval [0.01, 0.10]. 

Default: Alpha = 0.01

Discussion

Function MULTICOMP performs a multiple-comparison analysis of means 
using the Student-Newman-Keuls method. The null hypothesis is equality of all 
possible ordered subsets of a set of means. This null hypothesis is tested using 
the Studentized range of each of the corresponding subsets of sample means. 
The method is discussed in many elementary statistics texts, e.g., Kirk (1982, 
pp. 123–125).

Example

A multiple-comparisons analysis is performed using data discussed by Kirk. 
The results show that there are three groups of means with three separate sets of 
values:
 (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).

df = 45 

std_error = 1.6970563 

means = [36.7, 48.7, 43.4, 47.2, 40.3] 

equal_means = MULTICOMP(means, df, std_error) 

PM, equal_means, $

Title = "Size of groups of means:" 

Size of groups of means: 

 3 

 3 

 3 

 0

ANOVANESTED Function 
Analyzes a completely nested random model with possibly unequal numbers in 
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the subgroups. 

Usage

result = ANOVANESTED(n_factors, eq_option, n_levels, y)

Input Parameters

n_factors — Number of factors (number of subscripts) in the model, including 
error.

eq_option — Equal numbers option. 

n_levels — One-dimensional array with the number of levels.

If eq_option = 1, n_levels is of length n_factors and contains the number of lev-
els for each of the factors. In this case, the following additional variables are re-
ferred to in the description of ANOVANESTED: 

eq_option Description

0 Unequal numbers in the subgroups

1 Equal numbers in the subgroups

Variable Description

LNL n_levels(1) + 

 ... + n_levels(0) * n_levels(1) * 

 ... * n_levels(n_factors – 2)

LNLNF n_levels(0) * n_levels(1) * ...* 

n_levels(n_factors – 2)

NOBS The number of observations. NOBS equals 

n_levels(0) * n_levels(1) * ... *

n_levels(n_factors-1).
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If eq_option = 0, n_levels contains the number of levels of each factor at each 
level of the factor in which it is nested. In this case, the following additional 
variables are referred to in the description of ANOVANESTED: 

For example, a random one-way model with two groups, five responses in the 
first group and ten in the second group, would have LNL= 3, LNLNF= 2, 
NOBS = 15, n_levels(0) = 2, n_levels(1) = 5, and n_levels(2) = 10.

y — One-dimensional array of length NOBS containing the responses.  

Returned Value

result — The p-value for the F-statistic.

Input Keywords

Double — If present and nonzero, then double precision is used.

Confidence — Confidence level for two-sided interval estimates on the vari-
ance components, in percent. Confidence percent confidence intervals are com-
puted, hence, Confidence must be in the interval [0.0, 100.0). Confidence often 
will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence level 
ONECL, ONECL in the interval [50.0, 100.0), set Confidence = 100.0 - 2.0 * 
(100.0 - ONECL).  

Default: Confidence = 95.0

Output Keywords

Anova_Table — Named variable into which the array of size 15 containing the 
analysis of variance table is stored. The analysis of variance statistics are as fol-

Variable Description

LNL Length of n_levels.

LNLNF Length of the subvector of n_levels for the last 
factor.

NOBS Number of observations. NOBS equals the 
sum of the last LNLNF elements of n_levels.
n_levels(n_factors-1).
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lows:

Var_Comp — Named variable into which an array of size n_factors by 9 con-
taining statistics relating to the particular variance components in the model is 
stored.  Rows of Var_Comp correspond to the n_factors  factors.  Columns of 
Var_Comp are as follows: 

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

11 Adjusted R2 (in percent)

12 Estimate of the standard deviation

13 Overall mean of y

14 Coefficient of variation (in percent)
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If a test for the error variance equal to zero cannot be performed, 
Var_Comp(n_factors, 4) and Var_Comp(n_factors, 5) are set to NaN (not a 
number).

Ems — One-dimensional array of length n_factors  * ((n_factors + 1)/2) with 
expected mean square coefficients.                  

Y_Means — One-dimensional array containing the subgroup means. 

Column Descriptions

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F -statistic

5 p-value for F test

6 Variance component estimate

7 Percent of variance explained by variance 
component

8 Lower endpoint for a confidence interval 
on the variance component

9 Upper endpoint for a confidence interval 
on the variance component

eq_option Length of y means

0 1 + n_levels(0) + n_levels(1) + … 
n_levels((LNL - LNLNF)-1) 
(See the description of argument 
n_levels for definitions of LNL and 
LNLNF.)

1 1 + n_levels(0) + n_levels(0) * 
n_levels(1) + … + n_levels(0)* 
n_levels(1) * … * n_levels
(n_factors – 2)
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If the factors are labeled A, B, C, and error, the ordering of the means is grand 
mean, A means, AB means, and then ABC means.

Discussion

Function ANOVANESTED analyzes a nested random model with equal or un-
equal numbers in the subgroups. The analysis includes an analysis of variance 
table and computation of subgroup means and variance component estimates. 
Anderson and Bancroft (1952, pages 325−330) discuss the methodology. The 
analysis of variance method is used for estimating the variance components. 
This method solves a linear system in which the mean squares are set to the ex-
pected mean squares. A problem that Hocking (1985, pages 324−330) discuss-
es is that this method can yield negative variance component estimates.  
Hocking suggests a diagnostic procedure for locating the cause of a negative es-
timate. It may be necessary to reexamine the assumptions of the model.

Example 1

An analysis of a three-factor nested random model with equal numbers in the 
subgroups is performed using data discussed by Snedecor and Cochran (1967, 
Table 10.16.1, pages 285−288). The responses are calcium concentrations (in 
percent, dry basis) as measured in the leaves of turnip greens. Four plants are 
taken at random, then three leaves are randomly selected from each plant. 
Finally, from each selected leaf two samples are taken to determine calcium 
concentration. The model is

yijk = µ + αi + βij + eijk     i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the 
i-th plant, the αi’s are the plant effects and are taken to be independently dis-
tributed 

the βij’s are leaf effects each independently distributed

N ( , )0 2σ

N ( , )0 2σβ
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and the εijk’s are errors each independently distributed N(0, σ2). The effects are all 
assumed to be independently distributed. The data are given in the following ta-
ble:

PRO print_results, p, at, ems, y_means, var_comp 

anova_labels  =  ["degrees of freedom for model", $

"degrees of freedom for error", $

"total (corrected) degrees of freedom", $

"sum of squares for model", $

"sum of squares for error", $

"total (corrected) sum of squares",$

"model mean square", $

"error mean square", $

"F-statistic", $

"p-value",$

"R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. standard deviation of within error", $

"overall mean of y", $

"coefficient of variation (in percent)"]

ems_labels  =  ["Effect A and Error", $

"Effect A and Effect B", $

"Effect A and Effect A", $

"Effect B and Error", $

"Effect B and Effect B", $

"Error and Error"] 

Plant Leaf Samples
1 1

2

3

3.28

3.52

2.88

3.09

3.48

2.80
2 1

2

3

2.46

1.87

2.19

2.44

1.92

2.19
3 1

2

3

2.77

3.74

2.55

2.66

3.44

2.55
4 1

2

3

3.78

4.07

3.31

3.87

4.12

3.31
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components_labels  =  ["degrees of freedom for A", $

"sum of squares for A", $

"mean square of A", $

"F-statistic for A", $

"p-value for A", $

"Estimate of A", $

"Percent Variation Explained by A", $

"95% Confidence Interval Lower Limit for A", $

"95% Confidence Interval Upper Limit for A", $

"degrees of freedom for B", $

"sum of squares for B", $

"mean square of B", $

"F-statistic for B", $

"p-value for B", $

"Estimate of B", $

"Percent Variation Explained by B", $

"95% Confidence Interval Lower Limit for B", $

"95% Confidence Interval Upper Limit for B", $

"degrees of freedom for Error", $

"sum of squares for Error", $

"mean square of Error", $

"F-statistic for Error", $

"p-value for Error", $

"Estimate of Error", $

"Percent Explained by Error", $

"95% Confidence Interval Lower Limit for Error", $

"95% Confidence Interval Upper Limit for Error"]

means_labels = ["Grand mean", $

" A means 1", $

" A means 2", $

" A means 3", $

" A means 4", $

"AB means 1 1", $

"AB means 1 2", $

"AB means 1 3", $

"AB means 2 1", $

"AB means 2 2", $

"AB means 2 3", $

"AB means 3 1", $

"AB means 3 2", $

"AB means 3 3", $
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"AB means 4 1", $

"AB means 4 2", $

"AB means 4 3"]

PRINT, "p value of F statistic =", p     

PRINT              

PRINT, "               * * * Analysis of Variance * * *"

FOR i  =  0, 14 DO $

   PM, anova_labels(i), at(i), Format = "(A40, F20.5)"                   

PRINT      

PRINT, "          * * * Expected Mean Square Coefficients * * 
*"             

FOR i  =  0, 5 DO $

   PM, ems_labels(i), ems(i), Format = "(A40, F20.2)"

PRINT

PRINT, "      * * Analysis of Variance / Variance Components * 
*"

k = 0

FOR i  =  0, 2 DO BEGIN

   FOR j  =  0, 8 DO BEGIN

      PM, components_labels(k), var_comp(i, j), $

                Format = "(A45, F20.5)" 

      k = k + 1

   ENDFOR

ENDFOR

PRINT

PRINT, "means", Format = "(A20)"

FOR i  =  0, 16 DO $

   PM, means_labels(i), y_means(i), Format ="(A20, F20.2)"

END

y  =  [3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87, $

       1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, $

       3.78, 3.87, 4.07, 4.12, 3.31, 3.31]

n_levels  =  [4, 3, 2]

p = ANOVANESTED(3, 1, n_levels, y, Anova_Table = at, Ems=ems, $

                   Y_Means = y_means, Var_Comp = var_comp)

print_results, p, at, ems, y_means, var_comp
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p value of F statistic =      0.00000

               * * * Analysis of Variance * * *

            degrees of freedom for model            11.00000

            degrees of freedom for error            12.00000

    total (corrected) degrees of freedom            23.00000

                sum of squares for model            10.19054

                sum of squares for error             0.07985

        total (corrected) sum of squares            10.27040

                       model mean square             
0.92641

                       error mean square             
0.00665

                             F-statistic           
139.21599

                                 p-value             
0.00000

                  R-squared (in percent)            99.22248

         adjusted R-squared (in percent)            98.50976

 est. standard deviation of within error             0.08158

                       overall mean of y             
3.01208

   coefficient of variation (in percent)             2.70826

          * * * Expected Mean Square Coefficients * * *

                      Effect A and Error                
1.00

                   Effect A and Effect B                
2.00

                   Effect A and Effect A                
6.00

                      Effect B and Error                
1.00

                   Effect B and Effect B                
2.00

                         Error and Error                
1.00

         * * Analysis of Variance / Variance Components * *

                     degrees of freedom for A             
3.00000

                         sum of squares for A             
7.56034
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                             mean square of A             
2.52011

                            F-statistic for A             
7.66516

                                p-value for A             
0.00973

                                Estimate of A             
0.36522

             Percent Variation Explained by A            
68.53015

    95% Confidence Interval Lower Limit for A             
0.03955

    95% Confidence Interval Upper Limit for A             
5.78674

                     degrees of freedom for B             
8.00000

                         sum of squares for B             
2.63020

                             mean square of B             
0.32878

                            F-statistic for B            
49.40642

                                p-value for B             
0.00000

                                Estimate of B             
0.16106

Percent Variation Explained by B 30.22121

95% Confidence Interval Lower Limit for B 0.06967

95% Confidence Interval Upper Limit for B 0.60042

degrees of freedom for Error 12.00000

sum of squares for Error 0.07985

mean square of Error 0.00665

F-statistic for Error NaN

p-value for Error NaN

Estimate of Error 0.00665

Percent Explained by Error 1.24864

95% Confidence Interval Lower Limit for Error 0.00342

95% Confidence Interval Upper Limit for Error 0.01813

               means

          Grand mean                3.01

           A means 1                3.17

           A means 2                2.18
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           A means 3                2.95

           A means 4                3.74

        AB means 1 1                3.18

        AB means 1 2                3.50

        AB means 1 3                2.84

        AB means 2 1                2.45

        AB means 2 2                1.89

        AB means 2 3                2.19

        AB means 3 1                2.72

        AB means 3 2                3.59

        AB means 3 3                2.55

        AB means 4 1                3.82

        AB means 4 2                4.10

        AB means 4 3                3.31

ANOVABALANCED Function 
Analyzes a balanced complete experimental design for a fixed, random, or 
mixed model.

Usage

result = ANOVABALANCED(n_levels, y, n_random, idx_rand_fct, 
n_fct_per_eff, idx_fct_per_eff) 

Input Parameters

n_levels — One-dimensional array containing the number of levels for each of 
the factors.

y — One-dimensional array containing the responses.  y must not contain NaN 
(not a number) for any of its elements, i.e., missing values are not allowed.

n_random — For positive n_random, |n_random| is the number of random fac-
tors. For negative n_random, |n_random| is the number of random effects 
(sources of variation).

idx_rand_fct — One-dimensional index array of length |n_random| containing 
either the factor numbers to be considered random (for n_random positive) or 
containing the effect numbers to be considered random (for n_random nega-
tive).  

n_fct_per_eff — One-dimensional array containing the number of factors asso-
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ciated with each effect in the model.

idx_fct_per_eff — One-dimensional index array of length 
N_ELEMENTS(n_fct_per_effect). The first n_fct_per_eff(0) elements give the 
factor numbers in the first effect. The next n_fct_per_eff(1) elements give the 
factor numbers in the second effect. The last 
n_fct_per_eff(N_ELEMENTS(n_fct_per_eff)) elements give the factor numbers 
in the last effect. Main effects must appear before their interactions. In general, 
an effect E cannot appear after an effect F if all of the indices for E appear also 
in F.

Returned Value

result — The p-value for the F-statistic.

Input Keywords

Double — If present and nonzero, then double precision is used.

Confidence — Confidence level for two-sided interval estimates on the vari-
ance components, in percent.  Confidence  percent confidence intervals are 
computed, hence, Confidence must be in the interval [0.0, 100.0]. Confidence 
often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence level 
α, α in the interval [50.0, 100.0], set Confidence = 100.0 - 2.0 * (100.0 – α).  

Default: Confidence = 95.0

Model — Model Option

For the Scheffe model, effects corresponding to interactions of fixed and ran-
dom factors have their sum over the subscripts corresponding to fixed factors 
equal to zero. Also, the variance of a random interaction effect involving some 
fixed factors has a multiplier for the associated variance component that in-
volves the number of levels in the fixed factors. The Searle model has no sum-
mation restrictions on the random interaction effects and has a multiplier of one 
for each variance component.

Default: Model = 0

Model Description

0 Searle model

1 Scheffe model 
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Output Keywords

Anova_Table — Named variable into which an array of size 15 containing the 
analysis of variance table is stored. The analysis of variance statistics are as fol-
lows:

Var_Comp — Named variable into which an array of length 
N_ELEMENTS(n_fct_per_eff) + 1, by 9 array containing statistics relating to 
the particular variance components or effects in the model and the error is 
stored.  Rows of Var_Comp correspond to the rows of 
N_ELEMENTS(n_fct_per_eff) effects plus error. 

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)



ANOVABALANCED Function  245

Columns 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if 
there is no variance component to be estimated. If the variance component esti-
mate is negative, columns 8 and 9 contain NaN.

Ems — Named variable into which a one-dimensional array of length 
((N_ELEMENTS(n_fct_per_eff) + 1)*(N_ELEMENTS(n_fct_per_eff) + 2)) / 2 
containing expected mean square coefficients is stored. Suppose the effects are 
A, B, and AB. The ordering of the coefficients in Ems is as follows:

Y_Means — Named variable into which a one-dimensional array of length 

Column Description

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F -statistic

5 p-value for F test

6 Variance component estimate

7 Percent of variance of y explained by random effect

8 Lower endpoint for a confidence interval on the 
variance component

9 Upper endpoint for a confidence interval on the 
variance component

Error AB B A

A Ems(0) Ems(1) Ems(2) Ems(3) 

B Ems(4) Ems(5) Ems(6)

AB Ems(7) Ems(8)

Error Ems(9)
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(n_levels(0) + 1) * (n_levels (1) + 1) * . . . * (n_levels (n-1) + 1) containing the 
subgroup means is stored. Suppose the factors are A, B, and C. The ordering of 
the means is grand mean, A means, B means, C means, AB means, AC means, 
BC means, and ABC means. 

Discussion

Function ANOVABALANCED analyzes a balanced complete experimental de-
sign for a fixed, random, or mixed model. The analysis includes an analysis of 
variance table, and computation of subgroup means and variance component es-
timates. A choice of two parameterizations of the variance components for the 
model can be made. 

Scheffé (1959, pages 274−289) discusses the parameterization for Model = 1. 
For example, consider the following model equation with fixed factor A and 
random factor B:

yijk = µ + αi + bj + cij + eijk     i = 1, 2, ... , a; j = 1, 2, ... , b; k = 1, 2, ... , n

The fixed effects αi’s are subject to the restriction

the bj’s are random effects identically and independently distributed

cij are interaction effects each distributed

and are subject to the restrictions

∑ ==i
a

i1 0α

N B( , )0 2σ

N
a

a AB( , )0
1 2− σ

∑ = ==i
a

ijc j b1 0 1 2for , , ,K
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and the eijk’s are errors identically and independently distributed N(0, σ2). In 
general, interactions of fixed and random factors have sums over subscripts cor-
responding to fixed factors equal to zero. Also in general, the variance of a ran-
dom interaction effect is the associated variance component times a product of 
ratios for each fixed factor in the random interaction term. Each ratio depends 
on the number of levels in the fixed factor. In the earlier example, the random 
interaction AB has the ratio (a – 1)/a as a multiplier of 

and

In a three-way crossed classification model, an ABC interaction effect with A 
fixed, B random, and C fixed would have variance

Searle (1971, pages 400−401) discusses the parameterization for Model = 0. 
This parameterization does not have the summation restrictions on the effects 
corresponding to interactions of fixed and random factors. Also, the variance of 
each random interaction term is the associated variance component, i.e., with-
out the multiplier. This parameterization is also used with unbalanced data, 
which is one reason for its popularity with balanced data also. In the earlier ex-
ample,

Searle (1971, pages 400−404) compares these two parameterizations. Hocking 
(1973) considers these different parameterizations and concludes they are equiv-
alent because they yield the same variance-covariance structure for the respons-
es. Differences in covariances for individual terms, differences in expected 

σ AB
2

var( y
a

aijk B AB) = + − +σ σ σ2 2 21

( )( )a c

ac ABC
− −1 1 2σ

var yijk B AB� � = + +~ ~σ σ σ2 2 2
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mean square coefficients and differences in F tests are just a consequence of the 
definition of the individual terms in the model and are not caused by any funda-
mental differences in the models. For the earlier two-way model, Hocking states 
that the relations between the two parameterizations of the variance compo-
nents are

where 

are the variance components in the parameterization with Model = 0.

The computations for degrees of freedom and sums of squares are the same re-
gardless of the option specified by Model.  ANOVABALANCED first com-
putes degrees of freedom and sum of squares for a full factorial design. Degrees 
of freedom for effects in the factorial design that are missing from the specified 
model are pooled into the model effect containing the fewest subscripts but still 
containing the factorial effect. If no such model effect exists, the factorial ef-
fect is pooled into error. If more than one such effect exists, a terminal error 
message is issued indicating a misspecified model.

The analysis of variance method is used for estimating the variance compo-
nents. This method solves a linear system in which the mean squares are set to 
the expected mean squares. A problem that Hocking (1985, pages 324−330) dis-
cusses is that this method can yield a negative variance component estimate. 
Hocking suggests a diagnostic procedure for locating the cause of the negative 
estimate. It may be necessary to re-examine the assumptions of the model.

The percentage of variation explained by each random effect is computed (out-
put in Var_Comp element 7) as the variance of the associated random effect di-
vided by the variance of y. The two parameterizations can lead to different 
values because of the different definitions of the individual terms in the model. 
For example, the percentage associated with the AB interaction term in the earli-

σ σ σ

σ σ

B B AB

AB AB

a
2 2 2

2 2
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er two-way mixed model is computed for Model = 1 using the formula

while for the parameterization Model = 0, the percentage is computed using the 
formula

In each case, the variance components are replaced by their estimates (stored in 
Var_Comp element 6).

Confidence intervals on the variance components are computed using the meth-
od discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 
620). 

Example

An analysis of a generalized randomized block design is performed using data 
discussed by Kirk (1982, Table 6.10-1, pages 293−297). The model is

yijk = µ + αi + bj + cij + eijk     i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yijk is the response for the k-th experimental unit in block j with treat-
ment i; the αi’s are the treatment effects and are subject to the restriction 

the bj’s are block effects identically and independently distributed

% variation(AB|Model = 1) =

−

+ − +

a

a
a

a

AB

B AB

1

1

2

2 2 2

σ

σ σ σ

% variation(AB|Model = 0) =
+ +

~

~ ~
σ

σ σ σ
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B AB

2
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cij are interaction effects each distributed

and are subject to the restrictions

and the eijk’s are errors, identically and independently distributed N(0, σ2). The 
interaction effects are assumed to be distributed independently of the errors. 

N AB( , )0 3
4

2σ

∑ = ==i ijc j1
4 0 1 2 3 4for , , ,
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The data are given in the following table:

PRO print_results, p, at, ems, y_means, var_comp

anova_labels  =  ["degrees of freedom for model", $

        "degrees of freedom for error", $

        "total (corrected) degrees of freedom", $

        "sum of squares for model", $

        "sum of squares for error", $

        "total (corrected) sum of squares",$

        "model mean square", $

        "error mean square", $

        "F-statistic", $

        "p-value",$

        "R-squared (in percent)", $

        "adjusted R-squared (in percent)", $

        "est. standard deviation of within error", $

        "overall mean of y", $

        "coefficient of variation (in percent)"]

ems_labels  =  ["Effect A and Error", $

        "Effect A and Effect AB", $

        "Effect A and Effect B", $

        "Effect A and Effect A", $

        "Effect B and Error", $

        "Effect B and Effect AB", $

        "Effect B and Effect B", $

        "Effect AB and Error", $

        "Effect AB and Effect AB", $

        "Error and Error"]

components_labels  =  ["degrees of freedom for A", $

        "sum of squares for A", $

        "mean square of A", $

        "F-statistic for A", $

        "p-value for A", $

        "Estimate of A", $

Block

Treatment 1 2 3 4
1 3, 6 3, 1 2, 2 3, 2
2 4, 5 4, 2 3, 4 3, 3
3 7, 8 7, 5 6, 5 6, 6
4 7, 8 9, 10 10, 9 8, 11
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        "Percent Variation Explained by A", $

        "95% Confidence Interval Lower Limit for A", $

        "95% Confidence Interval Upper Limit for A", $

        "degrees of freedom for B", $

        "sum of squares for B", $

        "mean square of B", $

        "F-statistic for B", $

        "p-value for B", $

        "Estimate of B", $

        "Percent Variation Explained by B", $

        "95% Confidence Interval Lower Limit for B", $

        "95% Confidence Interval Upper Limit for B", $

        "degrees of freedom for AB", $

        "sum of squares for AB", $

        "mean square of AB", $

        "F-statistic for AB", $

        "p-value for AB", $

        "Estimate of AB", $

        "Percent Variation Explained by AB", $

        "95% Confidence Interval Lower Limit for AB", $

        "95% Confidence Interval Upper Limit for AB", $

        "degrees of freedom for Error", $

        "sum of squares for Error", $

        "mean square of Error", $

        "F-statistic for Error", $

        "p-value for Error", $

        "Estimate of Error", $

        "Percent Explained by Error", $

        "95% Confidence Interval Lower Limit for Error", $

        "95% Confidence Interval Upper Limit for Error"]

means_labels = ["Grand mean", $

        " A means 1", $

        " A means 2", $

        " A means 3", $

        " A means 4", $

        " B means 1", $

        " B means 2", $

        " B means 3", $

        " B means 4", $

        "AB means 1 1", $

        "AB means 1 2", $
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        "AB means 1 3", $

        "AB means 1 4", $

        "AB means 2 1", $

        "AB means 2 2", $

        "AB means 2 3", $

        "AB means 2 4", $

        "AB means 3 1", $

        "AB means 3 2", $

        "AB means 3 3", $

        "AB means 3 4", $

        "AB means 4 1", $

        "AB means 4 2", $

        "AB means 4 3", $

        "AB means 4 4"]

PRINT, "p value of F statistic =", p     

PRINT              

PRINT, "               * * * Analysis of Variance * * *"

FOR i  =  0, 14 DO $

   PM, anova_labels(i), at(i), Format = "(A40, F20.5)"                   

PRINT      

PRINT, "          * * * Expected Mean Square Coefficients * * 
*"             

FOR i  =  0, 9 DO $

   PM, ems_labels(i), ems(i), Format = "(A40, F20.2)"

PRINT

PRINT, "       * * Analysis of Variance / Variance Components * 
*"

k = 0

FOR i  =  0, 3 DO BEGIN

   FOR j  =  0, 8 DO BEGIN

      PM, components_labels(k), var_comp(i, j), $

             Format = "(A45, F20.5)" 

      k = k + 1

   ENDFOR

ENDFOR

PRINT

PRINT, "means", Format = "(A20)"

FOR i  =  0, 24 DO $
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   PM, means_labels(i), y_means(i), Format ="(A20, F20.2)"

END

y  =  [3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0, $

       2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0, $

       6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0]

n_levels  =  [4, 4, 2]

indrf  =  [2, 3]

nfef  =  [1, 1, 2]

indef  =  [1, 2, 1, 2]

p  =  ANOVABALANCED(n_levels, y, 2, indrf, nfef, indef, $

                    Anova_Table = at, Ems = ems, $

                    Y_Means = y_means, Var_Comp = var_comp)

print_results, p, at, ems, y_means, var_comp

% ANOVABALANCED: Note: STAT_ENDPNTS_NEGATIVE

One or more endpoints are negative and are set to zero.

p value of F statistic =  4.94719e-06

               * * * Analysis of Variance * * *

            degrees of freedom for model            15.00000

            degrees of freedom for error            16.00000

    total (corrected) degrees of freedom            31.00000

                sum of squares for model           216.50000

                sum of squares for error            19.00000

        total (corrected) sum of squares           235.50000

                       model mean square            
14.43333

                       error mean square             
1.18750

                             F-statistic            
12.15439

                                 p-value             
0.00000

                  R-squared (in percent)            91.93206

         adjusted R-squared (in percent)            84.36836

 est. standard deviation of within error             1.08972

                       overall mean of y             
5.37500

   coefficient of variation (in percent)            20.27395
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          * * * Expected Mean Square Coefficients * * *

                      Effect A and Error                
1.00

                  Effect A and Effect AB                
2.00

                   Effect A and Effect B                
0.00

                   Effect A and Effect A                
8.00

                      Effect B and Error                
1.00

                  Effect B and Effect AB                
2.00

                   Effect B and Effect B                
8.00

                     Effect AB and Error                
1.00

                 Effect AB and Effect AB                
2.00

                         Error and Error                
1.00

       * * Analysis of Variance / Variance Components * *

                     degrees of freedom for A             
3.00000

                         sum of squares for A           
194.50000

                             mean square of A            
64.83334

                            F-statistic for A            
32.87324

                                p-value for A             
0.00004

                                Estimate of A                 
NaN

             Percent Variation Explained by A                 
NaN

    95% Confidence Interval Lower Limit for A                 
NaN

    95% Confidence Interval Upper Limit for A                 
NaN

                     degrees of freedom for B             
3.00000

                         sum of squares for B             
4.25000



256  Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

                             mean square of B             
1.41667

                            F-statistic for B             
0.71831

                                p-value for B             
0.56566

                                Estimate of B            
-0.06944

             Percent Variation Explained by B             
0.00000

    95% Confidence Interval Lower Limit for B                 
NaN

    95% Confidence Interval Upper Limit for B                 
NaN

                    degrees of freedom for AB             
9.00000

                        sum of squares for AB            
17.75000

                            mean square of AB             
1.97222

                           F-statistic for AB             
1.66082

                               p-value for AB             
0.18016

                               Estimate of AB             
0.39236

            Percent Variation Explained by AB            
24.83516

   95% Confidence Interval Lower Limit for AB             
0.00000

   95% Confidence Interval Upper Limit for AB             
2.75803

                 degrees of freedom for Error            
16.00000

                     sum of squares for Error            
19.00000

                         mean square of Error             
1.18750

                        F-statistic for Er-
ror                 NaN

                            p-value for Er-
ror                 NaN

                            Estimate of Error             
1.18750

                   Percent Explained by Error            
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75.16483

95% Confidence Interval Lower Limit for Error             
0.65868

95% Confidence Interval Upper Limit for Error             
2.75057

               means

          Grand mean                5.38

           A means 1                2.75

           A means 2                3.50

           A means 3                6.25

           A means 4                9.00

           B means 1                6.00

           B means 2                5.12

           B means 3                5.12

           B means 4                5.25

        AB means 1 1                4.50

        AB means 1 2                2.00

        AB means 1 3                2.00

        AB means 1 4                2.50

        AB means 2 1                4.50

        AB means 2 2                3.00

        AB means 2 3                3.50

        AB means 2 4                3.00

        AB means 3 1                7.50

        AB means 3 2                6.00

        AB means 3 3                5.50

        AB means 3 4                6.00

        AB means 4 1                7.50

        AB means 4 2                9.50

        AB means 4 3                9.50

        AB means 4 4                9.50
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; Add Outliners

x(0, 1)  =  100.0

x(3, 4)  =  100.0

x(99, 2)  =  -100.0

p_cov  =  POOLED_COV(x, n_groups, Idx_Vars = idxv, $

                     Idx_Cols = idxc)

PM, p_cov, Title = "Pooled Cavariance with Outliners"

Pooled Cavariance with Outliners

      60.4264     0.304244     0.127488     -1.55551

     0.304244      70.5257     0.167135    -0.171791

     0.127488     0.167135     0.185188    0.0684639

     -1.55551    -0.171791    0.0684639      66.3798

r_cov  =  ROBUST_COV(x, n_groups, Idx_Vars = idxv, $

                     Idx_Cols = idxc, Percentage = percent-
age)

PM, r_cov, Title = "Robust Covariance with Outliners"

Robust Covariance with Outliners

     0.255521    0.0876029     0.155279    0.0359198

    0.0876029     0.112674    0.0545391    0.0322426

     0.155279    0.0545391     0.172263    0.0412149

    0.0359198    0.0322426    0.0412149    0.0424182
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CHAPTER

5

Categorical and Discrete 
Data Analysis 

Contents of Chapter

Statistics in the Two-Way Contingency Table

Two-way contingency 
table analysis........................... CONTINGENCY Function

Exact probabilities in a table;
total enumeration......................  EXACT_ENUM Function

Exact probabilities in a 
table ..................................  EXACT_NETWORK Function

Generalized Categorical Models

Generalized linear models ................. CAT_GLM Function

Introduction
Routine CONTINGENCY computes many statistics of interest in a two-way 
table. Statistics computed by this routine includes the usual chi-squared statis-
tics, measures of association, Kappa, and many others. Exact probabilities for 
two-way tables can be computed by EXACT_ENUM , but this routine uses the 
total enumeration algorithm and, thus, often uses orders of magnitude more 
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computer time than EXACT_NETWORK which computes the same probabili-
ties by use of the network algorithm (but can still be quite expensive).

The routine CAT_GLM in the second section is concerned with generalized lin-
ear models (see McCullagh and Nelder 1983) in discrete data. This routine can 
be used to compute estimates and associated statistics in probit, logistic, mini-
mum extreme value, Poisson, negative binomial (with known number of 
successes), and logarithmic models. Classification variables as well as weights, 
frequencies and additive constants may be used so that general linear models 
can be fit. Residuals, a measure of influence, the coefficient estimates, and other 
statistics are returned for each model fit. When infinite parameter estimates are 
required, extended maximum likelihood estimation may be used. Log-linear 
models can be fit in CAT_GLM through the use of Poisson regression models. 
Results from Poisson regression models involving structural and sampling zeros 
will be identical to the results obtained from the log-linear model routines but 
will be fit by a quasi-Newton algorithm rather than through iterative propor-
tional fitting.
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CONTINGENCY Function 
Performs a chi-squared analysis of a two-way contingency table.

Usage

result = CONTINGENCY(table)

Input Parameters

table — Two-dimensional array containing the observed counts in the contin-
gency table.

Returned Value

result — Pearson chi-squared p-value for independence of rows and columns.

Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Chi_Sq_Test — Named variable into which the three-element array containing 
statistics associated with the chi-squared tests is stored. The first element con-
tains the degrees of freedom for the chi-squared tests associated with the table, 
the second element contains the Pearson chi-squared test statistic, and the third 
element contains the probability of a larger Pearson chi-squared, p-value.

Lrt — Named variable into which the three-element array containing statistics 
associated with the likelihood ratio G-squared tests is stored. The first element 
contains the degrees of freedom for the chi-squared tests associated with the 
table, the second element contains the likelihood ratio G2 (chi-squared), and the 
third element contains the probability of a larger G2.

Expected — Named variable into which the two-dimensional array of size 
(n_rows+1) by (n_columns+1) containing the expected values of each cell in the 
table is stored, where n_rows=(N_ELEMENTS(table(*,0)) and 
n_columns=(N_ELEMENTS(table(0,*)). The expected values are computed 
under the null hypothesis and stored in the first n_rows rows and n_columns 
columns. The marginal totals are in the last row and column.
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Chi_Sq_Contrib — Named variable into which a two-dimensional array of size 
(n_rows+1) by (n_columns+1) containing the contributions for each cell in the 
table is stored. The contributions to chi-squared for each cell in the table is in 
the first n_rows rows and n_columns columns. The last row and column contain 
the total contribution to chi-squared for that row or column.

Chi_Sq_Stats — Named variable into which an array of length 5 containing 
chi-squared statistics associated with this contingency table is stored. The last 
three elements are based on Pearson’s chi-squared statistic (see Chi_Sq_Test). 
The chi-squared statistics are given as follows:

Table_Stats — Named variable into which a two-dimensional array of size 23 x 
5 containing statistics associated with this table is stored. Each row corre-
sponds to a statistic.

Element Chi-squared Statistics

0 exact mean

1 exact standard deviation

2 phi

3 contingency coefficient

4 Cramer’s V

Row Statistic

0 Gamma

1 Kendall’s τb

2 Stuart’s τc

3 Somers’ D for rows (given columns)

4 Somers’ D for columns (given rows)

5 product moment correlation

6 Spearman rank correlation

7 Goodman and Kruskal τ for rows (given columns)

8 Goodman and Kruskal τ for columns (given rows)

9 uncertainty coefficient U (symmetric)
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If a statistic cannot be computed or if some value is not relevant for the com-
puted statistic, the entry is NaN (Not a Number). The columns are as follows:

In the McNemar tests, Column 0 contains the statistic, Column 1 contains the 
chi-squared degrees of freedom, Column 3 contains the exact p-value (1 degree 
of freedom only), and Column 4 contains the chi-squared asymptotic p-value. 
The Kruskal-Wallis test is the same except no exact p-value is computed.

10 uncertainty Ur | c (rows)

11 uncertainty U c | r (columns)

12 optimal prediction λ (symmetric)

13 optimal prediction λ r  | c (rows)

14 optimal prediction λ c | r (columns)

15 optimal prediction λ r  | c (rows)

16 optimal prediction λ c | r   (columns)

17 test for linear trend in row probabilities if 
n_rows = 2.
If n_rows is not 2, a test for linear trend in column 
probabilities if n_columns = 2.

18 Kruskal-Wallis test for no-row effect

19 Kruskal-Wallis test for no-column effect

20 kappa (square tables only)

21 McNemar test of symmetry (square tables only)

22 McNemar one degree of freedom test of symme-
try (square tables only)

Column Value

0 estimated statistic

1 standard error for any parameter value

2 standard error under the null hypothesis

3 t value for testing the null hypothesis

4 p-value of the test in column 3

Row Statistic
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Discussion

Function CONTINGENCY computes statistics associated with an r x c contin-
gency table. The function computes the chi-squared test of independence, 
expected values, contributions to chi-squared, row and column marginal totals, 
some measures of association, correlation, prediction, uncertainty, the McNe-
mar test for symmetry, a test for linear trend, the odds and the log odds ratio, 
and the kappa statistic (if the appropriate keywords are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote 
the total count in the table. Let pij = pi·p·j denote the predicted cell probabili-
ties under the null hypothesis of independence, where pi· and p·j are the row 
and column marginal relative frequencies. Next, compute the expected cell 
counts as eij = npij.

Also required in the following are auv and buv for u, where ν = 1, ..., n. Let (rs, 
cs) denote the row and column response of observation s. Then, auv = 1, 0, or –
1, depending on whether ru < rv , ru = rv , or ru > rv. The buv similarly defined 
in terms of the cs variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij – eij)
2/eij. The 

Pearson chi-squared statistic (denoted χ2) is computed as the sum of the cell 
contributions to chi-squared. It has (r – 1) (c – 1)  degrees of freedom and tests 
the null hypothesis of independence, i.e., H0:pij = pi·p·j. The null hypothesis is 
rejected if the computed value of χ2 is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows:

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the 
same degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency 
Coefficient, and Cramer’s V)

There are three measures related to chi-squared that do not depend on sample 
size:

G2 2 xij ln xij npij⁄( )
,

∑–=
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•  phi, 

•  contingency coefficient, 

•  Cramer’s V, 

Since these statistics do not depend on sample size and are large when the 
hypothesis of independence is rejected, they can be thought of as measures of 
association and can be compared across tables with different sized samples. 
While both P and V have a range between 0.0 and 1.0, the upper bound of P is 
actually somewhat less than 1.0 for any given table (see Kendall and Stuart 
1979, p. 587). The significance of all three statistics is the same as that of the χ2 
statistic, Chi_Sq_Test.

The distribution of the χ2 statistic in finite samples approximates a chi-squared 
distribution. To compute the exact mean and standard deviation of the χ2 statis-
tic, Haldane (1939) uses the multinomial distribution with fixed-table marginals. 
The exact mean and standard deviation generally differ little from the mean and 
standard deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures 
of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic 
p-values are reported. Estimates of the standard errors are computed in two 
ways. The first estimate, in Column 1 of the array table_stats, is asymptotically 
valid for any value of the statistic. The second estimate, in Column 2 of the 
array, is only correct under the null hypothesis of no association. The z-scores 
in Column 3 of statistics are computed using this second estimate of the stan-
dard errors. The p-values in column 4 are computed from this z-score. See 
Brown and Benedetti (1977) for a discussion and formulas for the standard 
errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row 
and column categories. Function CONTINGENCY also computes several mea-
sures of association for tables in which the row and column categories 
correspond to ranked observations. Two of these tests, the product moment cor-
relation and the Spearman correlation, are correlation coefficients computed 
using assigned scores for the row and column categories. The cell indices are 
used for the product-moment correlation, while the average of the tied ranks of 

φ χ2
n⁄=

P χ2
n χ2+( )⁄=

V χ2
n min r c,( )( )⁄=
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the row and column marginals is used for the Spearman rank correlation. Other 
scores are possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association 
that are computed like a correlation coefficient in the numerator. In all these 
measures, the numerator is computed as the “covariance” between the auv vari-
ables and buv variables defined above, i.e., as follows:

Recall that auv and buv can take values –1, 0, or 1. Since the product auvbuv = 1 
only if auv and buv are both 1 or are both –1, it is easy to show that this “covari-
ance” is twice the total number of agreements minus the number of 
disagreements, where a disagreement occurs when auvbuv = –1. 

Kendall’s τb is computed as the correlation between the auv variables and buv 
variables (see Kendall and Stuart 1979, p. 593). In a rectangular table (r ≠ c), 
Kendall’s τb cannot be 1.0 (if all marginal totals are positive). For this reason, 
Stuart suggested a modification to the denominator of τ in which the denomina-
tor becomes the largest possible value of the “covariance.” This maximizing 
value is approximately n2m / (m – 1), where m = min(r, c). Stuart’s τc uses this 
approximate value in its denominator. For large n,

. 

Gamma can be motivated in a slightly different manner. Because the “covari-
ance” of the auv variables and the buv variables can be thought of as twice the 
number of agreements minus the disagreements, 2(A – D), where A is the num-
ber of agreements and D is the number of disagreements, Gamma is motivated 
as the probability of agreement minus the probability of disagreement, given 
that either agreement or disagreement occurred. This is shown as γ = (A – D) / 
(A + D). 

Two definitions of Somers’ D are possible, one for rows and a second for col-
umns. Somers’ D for rows can be thought of as the regression coefficient for 
predicting auv from buv. Moreover, Somer’s D for rows is the probability of 
agreement minus the probability of disagreement, given that the column vari-
able, buv, is not 0. Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found 
in Kendall and Stuart (1979, p. 592).

auvbuv∑∑

τc mτb m 1–( )⁄≈
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Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require 
any ordering of the row or column variables. They are based entirely upon 
probabilities. Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. 
Under the null hypothesis of independence, choose the column with the highest 
column marginal probability for all rows. In this case, the probability of mis-
classification for any row is 1 minus this marginal probability. If independence 
is not assumed, then within each row, choose the column with the highest row-
conditional probability. The probability of misclassification for the row becomes 
1 minus this conditional probability.

Define the optimal prediction coefficient λc | r for predicting columns from rows 
as the proportion of the probability of misclassification that is eliminated 
because the random variables are not independent. It is estimated by

where m is the index of the maximum estimated probability in the row (pim) or 
row margin (p·m). A similar coefficient is defined for predicting the rows from 
the columns. The symmetric version of the optimal prediction λ is obtained by 
summing the numerators and denominators of λr | c  and λc | r , then dividing. 
Standard errors for these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the 
marginal probabilities. One way to correct this is to use row-conditional proba-
bilities. The optimal prediction λ* coefficients are defined as the corresponding 
λ coefficients in which first the row (or column) marginals are adjusted to the 
same number of observations. This yields

where i indexes the rows, j indexes the columns, and p j | i is the (estimated) 
probability of column j given row i. λ*

r | c is similarly defined.

λc r

1 p•m–( ) 1 pim

i

∑–
 
 
 

–

1 p•m–
--------------------------------------------------------=

λc r
*

maxj pj i maxj pj i

i

∑ 
 
 

–

i

∑

R max j pj i∑ 
 
 

–

----------------------------------------------------------------=
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Goodman and Kruskal τ: A second kind of prediction measure attempts to 
explain the proportion of the explained variation of the row (column) measure 
given the column (row) measure. Define the total variation in the rows as 
follows:

Note that this is 1 / (2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for 
rows is computed as the reduction of the total variation for rows accounted for 
by the columns, divided by the total variation for the rows. To compute the 
reduction in the total variation of the rows accounted for by the columns, note 
that the total variation for the rows within column j is defined as follows:

The total variation for rows within columns is the sum of the qj variables. Con-
sistent with the usual methods in the analysis of variance, the reduction in the 
total variation is given as the difference between the total variation for rows and 
the total variation for rows within the columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al. 
(1975, p. 391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase 
in the log-likelihood that is achieved by the most general model over the inde-
pendence model, divided by the marginal log-likelihood for the rows. This is 
given by the following equation:

The uncertainty coefficient for columns is similarly defined. The symmetric 
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but aver-
ages the denominators of these two statistics. Standard errors for U are given in 
Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It 

n 2⁄ xi•
2∑ 

 
 

2( n )⁄–

qj x•j 2⁄ xij
2∑ 

 
 

2( xi• )⁄–=

U r c

xijlog xi•x•j nxij⁄( )
i j,
∑

xi•log xi• n⁄( )∑
--------------------------------------------------=
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tests the null hypothesis that no row populations are identical, using average 
ranks for the column variable. The Kruskal-Wallis statistic for columns is simi-
larly defined. Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a lin-
ear trend in the row probabilities if it is assumed that the column variable is 
monotonically ordered. In this test, the probabilities for row 1 are predicted by 
the column index using weighted simple linear regression. This slope is given 
by

where

is the average column index. An asymptotic test that the slope is zero may then 
be obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities 
is computed. This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In 
the kappa statistic, the rows and columns correspond to the responses of two 
judges. The judges agree along the diagonal and disagree off the diagonal. Let

denote the probability that the two judges agree, and let

denote the expected probability of agreement under the independence model. 
Kappa is then given by (p0 – pc) / (1 – pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contin-
gency table. In other words, it is a test of the null hypothesis H0:θij = θji . The 

β̂

x• j x1 j x•j x1•– n⁄⁄( ) j j–( )
j

∑
x• j j j–( )

2

∑
--------------------------------------------------------------------=

j x•j j n⁄∑=

p0 xii n⁄∑=

pc eii n⁄∑=
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multiple degrees-of-freedom version of the McNemar test with r(r – 1) / 2 
degrees of freedom is computed as follows:

The single degree-of-freedom test assumes that the differences, xij – xji , are all 
in one direction. The single degree-of-freedom test is more powerful than the 
multiple degrees-of-freedom test when this is the case. The test statistic is given 
as follows:

The exact probability can be computed by the binomial distribution.

Example 1

The following example, taken from Kendall and Stuart (1979), involves the dis-
tance vision in the right and left eyes. Output contains only the p-value.

table = [[821,116,72,43], [112,494,151,34], $
[85,145,583,106], [35,27,87,331]]

print, "P-Value           ", CONTINGENCY(table)

P-Value                 0.00000

Example 2

The following example, which illustrates the use of Kappa and McNemar tests, 
uses the same distance vision data as the previous example. The available statis-
tics are obtained using keywords. First, a procedure is defined to output the 
results.

PRO print_results, chi_sq_test, lrt, $
expected, chi_sq_contrib, chi_sq_stats, $
table_stats

PRINT, "Pearson Chi_Squared Statistics:"

PM, chi_sq_test(0), $

xij xji–( )2

xij xji+( )
-----------------------

<
∑

xij xji–( )
i j<
∑ 

 
 

2

xij xji+( )∑
----------------------------------------------
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Title = "Degrees of Freedom"

PM, chi_sq_test(1), Title = "Chi-Squared"

PM, chi_sq_test(2), Title = "P-Value"

PRINT

PRINT, $
"Likelihood Ratio G-Squared " + $
"Statistics:"

PM, lrt(0), Title = "Degrees of Freedom"

PM, lrt(1), Title = "G-Squared"

PM, lrt(2), Title = "P-Value"

PRINT

PM, expected, Title = "Expected Values:"

PRINT

PM, chi_sq_contrib, $
Title = "Contributions to Chi-squared:"

PRINT

PM, chi_sq_stats, $
Title = "Chi-square Statistics:"

PRINT

PM, table_stats, Title = "Table Statistics:"

END

table = [[821,116,72,43], [112,494,151,34], $
[85,145,583,106], [35,27,87,331]]

p_value = CONTINGENCY(table, $
Chi_Sq_Test    = chi_sq_test, $
Lrt            = lrt, $
Expected       = expected, $
Chi_Sq_Contrib = chi_sq_contrib, $
Chi_Sq_Stats   = chi_sq_stats, $
Table_Stats    = table_stats)

print_results, chi_sq_test, lrt, expected, $
chi_sq_contrib, chi_sq_stats, table_stats

Pearson Chi_Squared Statistics:

Degrees of Freedom

  9.00000

Chi-Squared

 3304.37

P-Value

 0.00000

Likelihood Ratio G-Squared Statistics:

Degrees of Freedom



272  Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

 9.00000

G-Squared

 2781.02

P-Value

 0.00000

Expected Values:

 341.689  256.916  298.491  155.904 1053.00

 253.752  190.796  221.671  115.780  782.000

 289.771  217.879  253.136  132.215  893.000

 166.788  125.408  145.702  76.1012  514.000

 1052.00  791.000  919.000  480.000  3242.00

Contributions to Chi-squared:

 672.363  81.7416  152.696  93.7612  1000.56

 74.7802  481.835  26.5189  68.0768  651.211

 163.661  20.5287  429.849  15.4625  629.501

 91.8743  66.6263  10.8183  853.777  1023.10

 1002.68  650.732  619.882  1031.08  3304.37

Chi-square Statistics:

      9.00278

      4.24016

      1.00957

     0.710467

     0.582877

Table Statistics:

0.775704 0.0122983 0.0148632  52.1897  0.00000

0.642887 0.0122028 0.0123183  52.1897  0.00000

0.629265 0.0120573       NaN  52.1897  0.00000

0.641831 0.0122390 0.0122980  52.1897  0.00000

0.643945 0.0122152 0.0123385  52.1897  0.00000

0.692588 0.0127669 0.0172000  40.2669  0.00000

0.693882 0.0126566 0.0126942  54.6614  0.00000

0.341952 0.0122570 NaN  NaN  NaN

0.342993 0.0122165 NaN  NaN  NaN

0.317123 0.0110281 NaN  NaN  NaN

0.317811 0.0110453 NaN  NaN  NaN

0.316437 0.0110294 NaN  NaN  NaN

0.537337 0.0123718 NaN  NaN  NaN

0.537443 0.0125727 NaN  NaN  NaN

0.537232 0.0125851 NaN  NaN  NaN

0.550648 0.0135695 NaN  NaN  NaN
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0.563587 0.0126838 NaN  NaN  NaN

     NaN NaN NaN  NaN  NaN

 1561.49 3.00000 NaN  NaN  0.00000

 1563.03 3.00000 NaN  NaN  0.00000

0.574419 0.0110873 0.0105673  54.3583  0.00000

 4.76249   6.00000       NaN      NaN 0.574617

0.948667   1.00000       NaN 0.345904 0.330059

Warning Errors

STAT_DF_GT_30 — The degrees of freedom for Chi_Sq_Test are greater than 
30. The exact mean, standard deviation, and the normal distribution function 
should be used.

STAT_EXP_VALUES_TOO_SMALL — Some expected values are less than #. 
Some asymptotic p-values may not be good.

STAT_PERCENT_EXP_VALUES_LT_5 — Twenty percent of the expected 
values are calculated less than 5.

EXACT_ENUM Function 
Computes exact probabilities in a two-way contingency table using the total 
enumeration method.

Usage

result = EXACT_ENUM(table)

Input Parameters

table — Two-dimensional array containing the observed counts in the contin-
gency table.

Returned Value

result — The p-value for independence of rows and columns. The p-value rep-
resents the probability of a more extreme table where “extreme” is taken in the 
Neyman-Pearson sense. The p-value is “two-sided”.
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Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Prob_Table — Named variable into which the probability of the observed table 
occurring, given that the null hypothesis of independent rows and columns is 
true, is stored.

P_Value — Named variable into which the p-value for independence of rows 
and columns is stored. The p-value represents the probability of a more extreme 
table where “extreme” is taken in the Neyman-Pearson sense. The p-value is 
“two-sided”.

The p-value is also returned in functional form (see Returned Value). 

A table is more extreme if its probability (for fixed marginals) is less than or 
equal to Prob_Table.

Error_Chk — Named variable into which the sum of the probabilities of all 
tables with the same marginal totals is stored. Keyword Error_Chk should have 
a value of 1.0. Deviation from 1.0 indicates numerical error.

Discussion

Function EXACT_ENUM computes exact probabilities for an r by c 
contingency table for fixed row and column marginals (a marginal is the num-
ber 
of counts in a row or column), where r = N_ELEMENTS(table(*,0)) and 
c = N_ELEMENTS(table(0,*)). Let fij denote the count in row i and column j of a 
table, and let fi• and f•j denote the row and column marginals. Under the hypoth-
esis of independence, the (conditional) probability of the fixed marginals of the 
observed table is given by

where f•• is the total number of counts in the table. Pf  corresponds to output 
keyword Prob_Table.
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A “more extreme” table X is defined in the probablistic sense as more extreme 
than the observed table if the conditional probability computed for table X (for 
the same marginal sums) is less than the conditional probability computed for 
the observed table. The user should note that this definition can be considered 
“two-sided” in the cell counts.

Because EXACT_ENUM uses total enumeration in computing the probability 
of a more extreme table, the amount of computer time required increases very 
rapidly with the size of the table. Tables with a large total count f•• or a large 
value of r by c should not be analyzed using EXACT_ENUM. In such cases, 
try using EXACT_NETWORK.

Example

In this example, the exact conditional probability for the 2 by 2 contingency 
table 

is computed.

table  =  [[8, 8], [12, 2]]

p  =  EXACT_ENUM(table, P_Value = pv, Prob_Table = pt, $

                 Error_Chk = ec)

PRINT, "p-value =", p

p-value =    0.0576712

EXACT_NETWORK Function 
Computes Fisher exact probabilities and a hybrid approximation of the Fisher 
exact method for a two-way contingency table using the network algorithm.

Usage

result = EXACT_NETWORK(table)

8 12

8 2
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Input Parameters

table — Two-dimensional array containing the observed counts in the contin-
gency table.

Returned Value

result — The p-value for independence of rows and columns. The p-value rep-
resents the probability of a more extreme table where “extreme” is taken in the 
Neyman-Pearson sense. The p-value is “two-sided”.

Input Keywords

Double — If present and nonzero, double precision is used.

Approx_Params — One-dimensional array of size 3.  Approx_Params(0) is the 
expected value used in the hybrid approximation to Fisher’s exact test algorithm 
for deciding when to use asymptotic probabilities when computing path lengths.  
Approx_Params(1) is the percentage of remaining cells that must have esti-
mated expected values greater than  Approx_Params(0) before asymptotic 
probabilities can be used in computing path lengths.  Approx_Params(2) is the 
minimum cell estimated value allowed for asymptotic chi-squared probabilities 
to be used.

Asymptotic probabilities are used in computing path lengths whenever 
Approx_Params(1) or more of the cells in the table have estimated expected 
values of Approx_Params(0) or more, with no cell having expected value less 
than Approx_Params(2). See the Discussion section for details.

Defaults: Approx_Params(0) = 5.0

Approx_Params(1) = 80.0

Approx_Params(2) = 1.0

NOTE  These defaults correspond to the “Cochran” condition.

No_Approx — If present and nonzero, the Fisher exact test is used and 
Approx_Param is ignored.

Wk_Params — One-dimensional array of size 3.  The network algorithm 
requires a large amount of workspace. Some of the workspace requirements are 
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well-defined, while most of the workspace requirements can only be estimated. 
The estimate is based primarily on table size.

Function EXACT_ENUM allocates a default amount of workspace suitable for 
small problems. If the algorithm determines that this initial allocation of work-
space is inadaquate, the memory is freed, a larger amount of memory allocated 
(twice as much as the previous allocation), and the network algorithm is re-
started. The algorithm allows for up to Wk_Params(2) attempts to complete the 
algorithm.

Because each attempt requires computer time, it is suggested that 
Wk_Params(0) and Wk_Params(1) be set to some large numbers (like 1,000 and 
30,000) if the problem to be solved is large. It is suggested that Wk_Params(1) 
be 30 times larger than Wk_Params(0). Although EXACT_ENUM will eventu-
ally work its way up to a large enough memory allocation, it is quicker to 
allocate enough memory initially.

The known (well-defined) workspace requirements are as follows: 
Define f•• = ΣΣfij equal to the sum of all cell frequencies in the observed table, 
nt = f•• + 1, mx = max (n_rows, n_columns), mn = min (n_rows, n_columns), 
t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1) ), and t2 = max 
(400 + mx, + 1, n_rows + n_columns + 1) where n_rows = 
N_ELEMENTS(table(*,0)) and n_columns = N_ELEMENTS(table(0,*)). 

The following amount of integer workspace is allocated: 3mx + 2mn + t1.

The following amount of real workspace is allocated: nt + t2.

The remainder of the workspace that is required must be estimated and allo-
cated based on Wk_Params(0) and Wk_Params(1). The amount of integer 
workspace allocated is 6n (Wk_Params(0) + Wk_Params(1)). The amount of 
real workspace allocated is n (6*Wk_Params(0) + 2* Wk_Params(1)). Variable 
n is the index for the attempt, 1 < n ≤ Wk_Params(2).

Defaults: Wk_Params(0) = 100

Wk_Params(1) = 3000

Wk_Params(2) = 10

Output Keywords

Prob_Table — Named variable into which the probability of the observed table 
occurring given that the null hypothesis of independent rows and columns is 
true is stored.
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P_Value — Named variable into which the p-value for independence of rows 
and columns is stored. The p-value represents the probability of a more extreme 
table where “extreme” is in the Neyman-Pearson sense. The P_Value is “two-
sided”. The p-value is also returned in functional form (see Returned Value). 

A table is more extreme if its probability (for fixed marginals) is less than or 
equal to Prob_Table.

Discussion

Function EXACT_NETWORK computes Fisher exact probabilities or a hybrid 
algorithm approximation to Fisher exact probabilities for an r by c contingency 
table with fixed row and column marginals (a marginal is the number of counts 
in a row or column), where r = n_rows and c = n_columns. Let fij denote the 
count in row i and column j of a table, and let fi and f•j denote the row and col-
umn marginals. Under the hypothesis of independence, the (conditional) 
probability of the fixed marginals of the observed table is given by

where f•• is the total number of counts in the table. Pf  corresponds to output 
keyword Prob_Table.

A “more extreme” table X is defined in the probablistic sense as more extreme 
than the observed table if the conditional probability computed for table X (for 
the same marginal sums) is less than the conditional probability computed for 
the observed table. The user should note that this definition can be considered 
“two-sided” in the cell counts.

Example

The following example demonstrates and compares the various methods of 
computing the chi-squared p-value with respect to accuracy. As seen in the out-
put of this example, the Fisher exact probability and the usual asymptotic chi-
squared probability (generated using function CONTINGENCY) can be 
different.

PRO print_results, p, p2, p3, p4
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   PRINT, "Asymptotic Chi-Squared p-value"

   PRINT, "p-value =", p

   PRINT, "Network Algorithm with Approximation"

   PRINT, "p-value =", p2

   PRINT, "Network Algorithm without Approximation"

   PRINT, "p-value =", p3

   PRINT, "Total Enumeration Method"

   PRINT, "p-value =", p4

END

table  =  TRANSPOSE([[20, 20, 0, 0, 0],  $

                  [10, 10, 2, 2, 1],  $

                  [20, 20, 0, 0, 0]])

p  =  CONTINGENCY(table)

p2  =  EXACT_NETWORK(table)

p3  =  EXACT_NETWORK(table, /No_Approx)

p4   =   EXACT_ENUM(table)

print_results, p, p2, p3, p4

% CONTINGENCY: Warning: STAT_EXP_VALUES_TOO_SMALL

        Some expected values are less than 1. Some asymptotic

p-values may not be good.

Asymptotic Chi-Squared p-value

p-value =    0.0322604

Network Algorithm with Approximation

p-value =    0.0601165

Network Algorithm without Approximation

p-value =    0.0598085

Total Enumeration Method

p-value =    0.0597294

Warning Errors

STAT_HASH_TABLE_ERROR_2 — The value “ldkey” = # is too small. 
“ldkey” is calculated as Wk_Params(0)*pow(10, N_Attempts−1) ending this 
execution attempt.
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STAT_HASH_TABLE_ERROR_3 — The value “ldstp” = # is too small. “ldstp” 
is calculated as Wk_Params(1)*pow(10, N_Attempts−1) ending this execution 
attempt.

Fatal Errors

STAT_HASH_TABLE_ERROR_1 — The hash table key cannot be computed 
because the largest key is larger than the largest representable integer. The algo-
rithm cannot proceed. 

CAT_GLM Function 
Analyzes categorical data using logistic, Probit, Poisson, and other generalized 
linear models.

Usage

result = CAT_GLM(n_class, n_continuous, model, x)

Input Parameters

n_class — Number of classification variables.

n_continuous — Number of continuous variables.

model — Model used to analyze the data. The six models are as follows:

model Relationship* PDF of Response Variable

0 Exponential Poisson

1 Logistic Negative Binomial

2 Logistic Logarithmic

3 Logistic Binomial

4 Probit Binomial

5 Log-log Binomial

* Relationship between the parameter, θ or λ, and a linear model of 
the explanatory variables, X β.
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NOTE  The lower bound of the response variable is 1 for model = 3 and is 0 
for all other models. See the Discussion section for more information about 
these models.

x — Two-dimensional array of size n_observations by (n_class + n_continuous) 
+ m containing data for the independent variables, dependent variable, and 
optional parameters, where n_observations is the number of observations.

The columns must be ordered such that the first n_class columns contain data 
for the class variables, the next n_continuous columns contain data for the con-
tinuous variables, and the next column contains the response variable. The final 
(and optional) m − 1 columns contain optional parameters, see keywords Ifreq, 
Ifix, and Ipar.

Returned Value

result — An integer value indicating the number of estimated coefficients in the 
model.

Input Keywords

Double — If present and nonzero, double precision is used.

Ifreq — Column number Ifreq in x containing the frequency of response for 
each observation.

Ifix — Column number Ifix in x containing a fixed parameter for each observa-
tion that is added to the linear response prior to computing the model parameter. 
The ‘fixed’ parameter allows one to test hypothesis about the parameters via the 
log-likelihoods.

Ipar — Column number Ipar in x containing the value of the known distribu-
tion parameter for each observation, where x(i, Ipar) is the known distribution 
parameter associated with the i-th observation. The meaning of the distribu-
tional parameter depends upon model as follows:

model Parameter Meaning of parameter (i)(Ipar)
0 E ln (E) is a fixed intercept to be included 

in the linear predictor (i.e., the offset).
1 S Number of successes required for the 

negative binomial distribution.
2 - Not used for this model.
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Default: When model ≠ 2, each observation is assumed to have a 
parameter value of 1. When model = 2, this parameter is not referenced.

Eps — The convergence criterion. Convergence is assumed when the maxi-
mum relative change in any coefficient estimate is less than Eps from one 
iteration to the next or when the relative change in the log-likelihood, criterion, 
from one iteration to the next is less than Eps / 100.0.

Default: Eps = 0.001

Itmax — Maximum number of iterations. Use Itmax = 0 to compute Hessian, 
stored in Covariances, and the Newton step, stored in Last_Step, at the initial 
estimates (The initial estimates must be input. Use keyword Init_Est).

Default: Itmax = 30

No_Intercept — If present and nonzero, there is no intercept in the model.  By 
default, the intercept is automatically included in the model.

Var_Effects — One-dimensional array of length n_effects containing the num-
ber of variables associated with each effect in the model, where n_effects is the 
number of effects (source of variation) in the model. Keywords Var_Effects and 
Indicies_Effects must be used together.

Indicies_Effects — One-dimensional index array of length Var_Effects(0) + 
Var_Effects(1) +  …  + Var_Effects(n_effects - 1). The first Var_Effects(0) ele-
ments give the column numbers of x for each variable in the first effect. The 
next Var_Effects(1) elements give the column numbers for each variable in the 
second effect. … The last Var_Effects(n_effects - 1) elements give the column 
numbers for each variable in the last effect. Keywords Indicies_Effects and 
Var_Effects must be used together.

Init_Est — One-dimensional array of length n_coef_input containing initial 
estimates of the parameters (n_coef_input can be completed by REGRES-
SORS). By default, unweighted linear regression is used to obtain initial 
estimates.

Max_Class — An upper bound on the sum of the number of distinct values 
taken on by each classification variable.

Default: Max_Class = n_observations by n_class

3-5 N Number of trials required for the 
binomial distribution.
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Output Keywords

N_Class_Vals — Named variable into which an one-dimensional array of 
length n_class containing the number of values taken by each classification 
variable is stored; the i-th classification variable has N_Class_Vals(i) distinct 
values.

Class_Vals — Named variable into which an one-dimensional array of length

containing the distinct values of the classification variables in ascending order is 
stored. The first N_Class_Vals(0) elements of Class_Vals contain the values for 
the first classification variables, the next N_Class_Vals(1) elements contain the 
values for the second classification variable, etc. 

Coef_Stat — Named variable into which a two-dimensional array of size 
n_coefficients by 4 containing the parameter estimates and associated statistics 
is stored.

Criterion — Named variable into which the optimized criterion is stored. The 
criterion to be maximized is a constant plus the log-likelihood.

Covariances — Named variable into which a two-dimensional array of size 
n_coefficients by n_coefficients containing the estimated asymptotic covariance 
matrix of the coefficients is stored.  For Itmax = 0, this is the Hessian computed 
at the initial parameter estimates.

model Statistic

0 Coefficient Estimate.

1 Estimated standard deviation of the estimated 
coefficient.

2 Asymptotic normal score for testing that the 
coefficient is zero.

3 The p-value associated with the normal score 
in column 2.

N_ Class_ Vals i
i
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Means — Named variable into which an one-dimensional array containing the 
means of the design variables is stored. The array is of length n_coefficients if 
keyword No_Intercept is used, and of length n_coefficients − 1 otherwise.

Case_Analysis — Named variable into which a two-dimensional array of size 
n_observations by 5 containing the case analysis is stored.

Case statistics are computed for all observations except where missing values 
prevent their computation. 

Last_Step — Named variable into which an one-dimensional array of length 
n_coefficients containing the last parameter updates (excluding step halvings) is 
stored. For Itmax = 0, Last_Step contains the inverse of the Hessian times the 
gradient vector, all computed at the initial parameter estimates.

Obs_Status — Named variable into which an one-dimensional array of length 
n_observations indicating which observations are included in the extended like-
lihood is stored.

Remarks

3. Dummy variables are generated for the classification variables as follows: 
An ascending list of all distinct values of each classification variable is 
obtained and stored in Class_Vals. Dummy variables are then generated for 
each but the last of these distinct values. Each dummy variable is zero 

Column Statistic
0 Predicted mean for the observation if model = 0. 

Otherwise, contains the probability of success on a sin-
gle trial.

1 The residual.
2 The estimated standard error of the residual.
3 The estimated influence of the observation.
4 The standardized residual.

Obs_Status(i) Status of observation

0 Observation i is in the likelihood

1 Observation i cannot be in the likelihood 
because it contains at least one missing value 
in x.

2 Observation i is not in the likelihood. Its esti-
mated parameter is infinite.
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unless the classification variable equals the list value corresponding to the 
dummy variable, in which case the dummy variable is one. See input key-
word Dummy_Method = 1 in routine REGRESSORS (Chapter 2, 
Regression).

4. The “product” of a classification variable with a covariate yields dummy 
variables equal to the product of the covariate with each of the dummy vari-
ables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in the 
usual manner. Each dummy variable associated with the first classification 
variable multiplies each dummy variable associated with the second classifi-
cation variable. The resulting dummy variables are such that the index of 
the second classification variable varies fastest.

Discussion

Function CAT_GLM uses iteratively reweighted least squares to compute 
(extended) maximum likelihood estimates in some generalized linear models 
involving categorized data. One of several models, including the probit, logistic, 
Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation; 
or, through the use of keyword Ifreq, each row can represent several observa-
tions. Also note that classification variables and their products are easily 
incorporated into the models via the usual regression-type specifications.

The models available in CAT_GLM are:

Model PDF of the Response Variable Parameterization
0 f (y) = (λy exp (−λ) ) / y! λ = N × exp (ω + η)

1

2
f (y) = (1 − θ)γ / (yln θ)
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Here, Φ denotes the cumulative normal distribution, N and S are known distri-
bution parameters specified for each observation via the keyword Ipar, and ω is 
an optional fixed parameter of the linear response, γi, specified for each obser-
vation. (If keyword Ifix is not used, then ω is taken to be 0.) Since the log-log 
model (model = 5) probabilities are not symmetric with respect to 0.5, quantita-
tively, as well as qualitatively, different models result when the definitions of 
“success” and “failure” are interchanged in this distribution. In this model and 
all other models involving θ, θ is taken to be the probability of a “success”.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are com-
puted. The frequency or the observation in all but binomial distribution 
models is taken from vector frequencies. In binomial distribution models, 
the frequency is taken as the product of n = parameter (i) and frequencies 
(i). Means are computed as

3. By default, unless keyword Init_Est is used, initial estimates of the coeffi-
cients are obtained (based upon the observation intervals) as multiple 

3

4 θ = Φ (ω + η)

5 θ = 1 − exp (−exp (ω + η) )
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regression estimates relating transformed observation probabilities to the 
observation design vector. For example, in the binomial distribution mod-
els, θ may be estimated as 

and, when model = 3, the linear relationship is given by 

while if model = 4, Φ−1 (θ) = Xβ. When computing initial estimates, stan-
dard modifications are made to prevent illegal operations such as division 
by zero. Regression estimates are obtained at this point, as well as later, by 
use of function MULTIREGRESS (Chapter 2, Regression).

4. Newton-Raphson iteration for the maximum likelihood estimates is imple-
mented via iteratively re-weighted least squares. Let

denote the log of the probability of the i-th observation for coefficients β. In 
the least-squares model, the weight of the i-th observation is taken as the 
absolute value of the second derivative of

with respect to

$θ = y i i� � � �parameter
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(times the frequency of the observation), and the dependent variable is 
taken as the first derivative Ψ with respect to γi, divided by the square root 
of the weight times the frequency. The Newton step is given by

where all derivatives are evaluated at the current estimate of γ and 
βn+1 = β − ∆β. This step is computed as the estimated regression coeffi-
cients in the least-squares model. Step halving is used when necessary to 
ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coeffi-
cient update from one iteration to the next is less than Eps or when the 
relative change in the log-likelihood from one iteration to the next is less 
than Eps / 100. Convergence is also assumed after Itmax iterations or when 
step halving leads to a step size of less than 0.0001 with no increase in the 
log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon 
(1981). Let li (γi) denote the log-likelihood of the i-th observation evalu-
ated at γi. Then, the standardized residual is computed as

where

is the value of γi when evaluated at the optimal 
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The denominator of this expression is used as the “standard error of the 
residual” while the numerator is “raw” residual. Following Cook and Weis-
berg (1982), the influence of the i-th observation is assumed to be

This quantity is a one-step approximation to the change in the estimates 
when the i-th observation is deleted. Here, the partial derivatives are with 
respect to β.

Programming Notes

1. Indicator (dummy) variables are created for the classification variables 
using function REGRESSORS (Chapter 2, Regression) using keyword 
Dummy_Method = 1.

2. To enhance precision, “centering” of covariates is performed if the model 
has an intercept and n_observations − Nmissing > 1. In doing so, the sam-
ple means of the design variables are subracted from each observation prior 
to its inclusion in the model. On convergence, the intercept, its variance, 
and its covariance with the remaining estimates are transformed to the 
uncentered estimate values.

3. Two methods for specifying a binomial distribution model are possible. In 
the first method, Ifreq contains the frequency of the observation while 
x(i, irt-1)  is 0 or 1 depending upon whether the observation is a success or 
failure. In this case, x(i, n_class +  n_ continuous) is always 1. The model 
is treated as repeated Bernoulli trials, and interval observations are not pos-
sible. A second method for specifying binomial models is to use to 
represent the number of successes in parameter (i) trials. In this case, fre-
quencies will usually be 1.

Example 1

The first example is from Prentice (1976) and involves the mortality of beetles 
after five hours exposure to eight different concentrations of carbon disulphide. 
The table below lists the number of beetles exposed (N) to each concentration 
level of carbon disulphide (x, given as log dosage) and the number of deaths 
which result (y). The data is given as follows:

l l li i
T

i i
’ ’
$ $ $γ γ γ� � � � � �′′ −1



290  Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

The number of deaths at each concentration level are fitted as a binomial 
response using logit (model = 3), probit (model = 4), and log-log (model = 5) 
models. Note that the log-log model yields a smaller absolute log likelihood 
(14.81) than the logit model (18.78) or the probit model (18.23). This is to be 
expected since the response curve of the log-log model has an asymmetric 
appearance, but both the logit and probit models are symmetric about θ = 0.5.

PRO print_results, cs, means, ca, crit, ls, cov

   PRINT, "              Coefficient Satistics"

   PRINT, "                  Standard   Asymptotic   ", $

                   "Asymptotic"

   PRINT, "  Coefficient        Error  Z-statistic      ", $

                    "P-value"

   PM, cs, Format = "(4F13.2)"

   PRINT

   PRINT, "Covariate Means = ", means, Format = "(A18, F6.3)"

   PRINT

   PRINT, "                           Case Analysis"

   PRINT, "                            Resid-
ual            ", $

                   "Standardized"

   PRINT, "   Predicted    Residual  Std. Error    Leverage", 
$

                 "    Residual"

   PM, ca, Format = "(5F12.3)"

Log Dosage
Number of Beetles 

Exposed
Number of Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60
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   PRINT

   PRINT, "Log-Likelihood = ", crit, Format = "(A18, F9.5)" 

   PRINT

   PRINT, "         Last Step"

   PRINT, ls

   PRINT

   PRINT, "Asymptotic Coefficient Covariance"

   PM, cov, Format = "(2F12.4)"

END

model  =  3

nobs  =  8

x  =  ([[1.690, 1.724, 1.755, 1.784, $

        1.811, 1.836, 1.861, 1.883], $    

       [6, 13, 18, 28, 52, 53, 61, 60], $

       [59, 60, 62, 56, 63, 59, 62, 60]])

ncoef  =  CAT_GLM(0, 1,  model,  x, Ipar = 2, Eps = 1.0e-3, $

                  Coef_Stat = cs, Covariances = cov, $

                  Criterion = crit, Means = means, $

                  Case_Analysis = ca, Last_Step = ls, $

                  Obs_Status = os)

print_results, cs, means, ca, crit, ls, cov

              Coefficient Satistics

                  Standard   Asymptotic   Asymptotic

  Coefficient        Error  Z-statistic      P-value

       -60.76         5.21       -11.66         0.00

        34.30         2.92        11.76         0.00

Covariate Means =  1.793

                           Case Analysis

                            Residual            
Standardized

   Predicted    Residual  Std. Error    Leverage    Residual
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       0.058       2.593       1.792       0.267       
1.448

       0.164       3.139       2.871       0.347       
1.093

       0.363      -4.498       3.786       0.311      -1.188

       0.606      -5.952       3.656       0.232      -1.628

       0.795       1.890       3.202       0.269       
0.590

       0.902      -0.195       2.288       0.238      -0.085

       0.956       1.743       1.619       0.198       
1.077

       0.979       1.278       1.119       0.138       
1.143

 Log-Likelihood = -18.77818

         Last Step

 -3.67824e-08  1.04413e-05

Asymptotic Coefficient Covariance

     27.1368    -15.1243

    -15.1243      8.5052

Warning Errors

STAT_TOO_MANY_HALVINGS — Too many step halvings. Convergence is 
assumed.

STAT_TOO_MANY_ITERATIONS — Too many iterations. Convergence is 
assumed.

Fatal Errors

STAT_TOO_FEW_COEF — Init_Est is used and “n_coef_input” = #. The 
model specified requires # coefficients.

STAT_MAX_CLASS_TOO_SMALL — The number of distinct values of the 
classification variables exceeds “Max_Class” = #.
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STAT_INVALID_DATA_8 — “N_Class_Values(#)” = #. The number of dis-
tinct values for each classification variable must be greater than one.

STAT_NMAX_EXCEEDED — The number of observations to be deleted has 
exceeded “lp_max” = #. Rerun with a different model or increase the 
workspace.
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CHAPTER

6

Nonparametric Statistics 

Contents of Chapter

One sample tests  - Nonparametric Statistics

Sign test .........................................  SIGNTEST Function

Wilcoxon rank sum test .................. WILCOXON Function

Noehter’s test for cyclical 
trend ..................................................  NCTRENDS Function

Cox and Stuarts’ sign test for trends 
in location and dispersion ................. CSTRENDS Function

Tie statistics ........................................  TIE_STATS Function

Two or more samples   

Kruskal-Wallis test ...............................  KW_TEST Function

Friedman’s test .....................  FRIEDMANS_TEST Function

Cochran's Q test ..............................  COCHRANQ Function

K-sample trends test ............................  KTRENDS Function

Introduction
Much of what is considered nonparametric statistics is included in other chap-
ters. Topics of possible interest in other chapters are: nonparametric measures of 
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location and scale (Chapter 1: Basic Statistics), nonparametric measures in a 
contingency table (Chapter 5: Categorical and Discrete Data Analysis), mea-
sures of correlation in a contingency table (Chapter 3: Correlation and Covari-
ance), and tests of goodness of fit and randomness (Chapter 7: Tests of 
Goodness of Fit) 

Missing Values

Most routines described in this chapter automatically handle missing values 
(NaN, “Not a Number”; see the introduction of this manual).

Tied Observations

Many of the routines described in this chapter contain a keyword Fuzz in the in-
put. Observations that are within Fuzz of each other in absolute value are said 
to be tied. Moreover, in some routines, an observation within Fuzz of some val-
ue is said to be equal to that value. In function WILCOXON (page 300), for ex-
ample, such observations are eliminated from the analysis. If Fuzz = 0.0, 
observations must be identically equal before they are considered to be tied. 
Other positive values of Fuzz allow for numerical imprecision or roundoff error.

SIGNTEST Function 
Performs a sign test.

Usage

result = SIGNTEST(x)

Input Parameters

x — One-dimensional array containing the input data.

Returned Value

result — Binomial probability of N_Pos_Dev or more positive differences in 
N_ELEMENTS(x) – N_Zero_Dev trials. Call this value probability. If no option 
is chosen, the null hypothesis is that the median equals 0.0.

Input Keywords

Double — If present and nonzero, double precision is used.
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Percentage — Scalar value in the range (0,1). Keyword Percentage is the 100 x 
Percentage percentile of the population.

Default: Percentage = 0.5

Percentile — Hypothesized percentile of the population from which x was 
drawn.

Default: Percentile = 0.0

Output Keywords

N_Pos_Dev — Number of positive differences x(j – 1) – Percentile, for 
j = 1, 2, ..., N_ELEMENTS(x).

N_Zero_Dev — Number of zero differences (ties) x(j – 1) – Percentile, for 
j = 1, 2, ..., N_ELEMENTS(x).

Discussion

Function SIGNTEST tests hypotheses about the proportion p of a population 
that lies below a value q, where p corresponds to keyword Percentage and q 
corresponds to keyword Percentile. In continuous distributions, this can be a 
test that q is the 100 p-th percentile of the population from which x was 
obtained. To carry out testing, SIGNTEST tallies the number of values above q 
in N_Pos_Dev. The binomial probability of N_Pos_Dev or more values above q 
is then computed using the proportion p and the sample size N_ELEMENTS (x) 
(adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative 
hypotheses: 

•  H0: Pr(X ≤ q) ≥ p (the p-th quantile is at least q)
H1: Pr(X < q) < p 
Reject H0 if probability is less than or equal to the significance level.

•  H0: Pr(X ≤ q) ≤ p (the p-th quantile is at least q)
H1: Pr(X < q) > p 
Reject H0 if probability is greater than or equal to 1 minus the significance 
level.

•  H0: Pr(X = q) = p (the p-th quantile is q)
H1: Pr((X < q) < p or Pr((X < q) > p 
Reject H0 if probability is less than or equal to half the significance level or 
greater than or equal to 1 minus half the significance level.
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The assumptions are as follows:

1. The Xi’s form a random sample; i.e., they are independent and identically 
distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater 
than, and equal to exists in the observations.

Many uses for the sign test are possible with various values of p and q. For 
example, to perform a matched sample test that the difference of the medians of 
Y and Z is 0.0, let p = 0.5, q = 0.0, and Xi = Yi – Zi in matched observations Y 
and Z. To test that the median difference is c, let q = c.

Example 1

This example tests the hypothesis that at least 50 percent of a population is neg-
ative. Because 0.18 < 0.95, the null hypothesis at the 5-percent level of 
significance is not rejected.

x =[92, 139, -6, 10, 81, -11, 45, -25, -4, $

22, 2, 41, 13, 8, 33, 45, -33, -45, -12]

PRINT, "Probability = ", SIGNTEST(x)

Probability =      0.179642

Example 2

This example tests the null hypothesis that at least 75 percent of a population is 
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of sig-
nificance is rejected.

x =[92, 139, -6, 10, 81, -11, 45, -25, -4, $

22, 2, 41, 13, 8, 33, 45, -33, -45, -12]

probability = SIGNTEST(x, Percentage = 0.75,$

Percentile = 0, N_Pos_Dev  = np, $

N_Zero_Dev = nz)

PM, probability, Title = "Probability"

Probability

 0.922543

PM, np, $

Title = "Number of Positive Deviations"

Number of Positive Deviations

 12

PM, nz, Title = "Number of Ties"
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Number of Ties

 0
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WILCOXON Function 
Performs a Wilcoxon rank sum test or a Wilcoxon signed rank test. 

Usage

result = WILCOXON( x1 [ , x2 ] )

Input Parameters

x1 — One-dimensional array containing the first sample.

x2 — (Optional) One-dimensional array containing the second sample.

Returned Value

result — If a Wilcoxon rank sum test is performed, returns the two-sided p-
value for the Wilcoxon rank sum statistic that is computed with average ranks 
used in the case of ties. 

If a Wilcoxon signed rank test is performed, returns an array of length two con-
taining the following values: 

The asymptotic probability of not exceeding the standardized (to an 
asymptotic variance of 1.0) minimum of (W+, W–) using method 1 
under the null hypothesis that the distribution is symmetric about 0.0.

And, the asymptotic probability of not exceeding the standardized (to an 
asymptotic variance of 1.0) minimum of (W+, W–) using method 2 
under the null hypothesis that the distribution is symmetric about 0.0.

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties in computing ranks in the 
combined samples. A tie is declared when two observations in the combined 
sample are within Fuzz of each other.

Default: Fuzz = 100 x ε x max { |xi 1|, |xj 2|}, where ε is machine 
precision for a Wilcoxon rank sum test, and Fuzz = 0.0 for a Wilcoxon 
signed rank test. 
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Output Keywords

Stats — Named variable into which the one-dimensional array of length 10 con-
taining the statistics below is stored.

If a Wilcoxon rank sum test is performed: 

If a Wilcoxon signed rank test is performed: 

Row Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x 
observations) adjusted for ties in such a manner that W 
is as small as possible

1 2 x E (W) – W, where E (W)is the expected value of W

2 probability of obtaining a statistic less than or equal to 
min {W, 2 x E (W) – W}

3 W statistic adjusted for ties in such a manner that W is 
as large as possible

4 2 x E (W) – W, where E (W) is the expected value of W, 
adjusted for ties in such a manner that W is as large as 
possible

5 probability of obtaining a statistic less than or equal to 
min {W, 2 x E (W) – W}, adjusted for ties in such a man-
ner that W is as large as possible

6 W statistic with average ranks used in case of ties

7 estimated standard error of Stats (6) under the null 
hypothesis of no difference

8 standard normal score associated with Stats (6)

9 two-sided p-value associated with Stats (6)

Row Statistics

0 The positive rank sum, W+, using method 1.

1 The absolute value of the negative rank sum, W–, using 
method 1.

2 The standardized (to anasymptotic variance of 1.0) mini-
mum of (W+, W–) using method 1.

3 The asymptotic probability of not exceeding stats(2) 
under the null hypothesis that the distribution is symmet-
ric about 0.0. 

4 The positive rank sum, W+, using method 2. 
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If Two Positional Arguments Are Supplied

Function WILCOXON performs the Wilcoxon rank sum test for identical popu-
lation distribution functions. The Wilcoxon test is a linear transformation of the 
Mann-Whitney U test. If the difference between the two populations can be 
attributed solely to a difference in location, then the Wilcoxon test becomes a 
test of equality of the population means (or medians) and is the nonparametric 
equivalent of the two-sample t-test. Function WILCOXON obtains ranks in the 
combined sample after first eliminating missing values from the data. The rank 
sum statistic is then computed as the sum of the ranks in the x1 sample.

Three methods for handling ties are used. (A tie is counted when two observa-
tions are within Fuzz of each other.) Method 1 uses the largest possible rank for 
tied observations in the smallest sample, while Method 2 uses the smallest pos-
sible rank for these observations. Thus, the range of possible rank sums is 
obtained. Method 3 for handling tied observations between samples uses the 
average rank of the tied observations. Asymptotic standard normal scores are 
computed for the W score (based on a variance that has been adjusted for ties) 
when average ranks are used (see Conover 1980, p. 217). The probability asso-
ciated with the two-sided alternative is then computed.

Hypothesis Tests

In each of the following tests, the first line gives the hypothesis (and its alterna-
tive) under the assumptions 1 to 3 below, while the second line gives the 
hypothesis when assumption 4 is also true. The rejection region is the same for 
both hypotheses and is given in terms of Method 3 for handling ties. Another 
output statistic should be used, (Stats(0) or Stats (3)), if another method for han-
dling ties is desired. 

5 The absolute value of the negative rank sum, W–, using 
method 2. 

6 The standardized (to an asymptotic variance of 1.0) mini-
mum of (W+, W–) using method 2. 

7 The asymptotic probability of not exceeding stats(6) 
under the null hypothesis that the distribution is symmet-
ric about 0.0. 

8 The number of zero observations. 

9 The total number of observations that are tied, and that 
are not within fuzz of zero. 

Row Statistics
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Assumptions

1. x1 and x2 contain random samples from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater 
than, or equal to exists among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then 
g(y) = f(x + c) for some constant c (i.e., the distribution of y is, at worst, a 
translation of the distribution of x).

Tables of critical values of the W statistic are given in the references for small 
samples.

If One Positional Argument is Supplied 

Function WILCOXON performs a Wilcoxon signed rank test of symmetry 
about zero. In one sample, this test can be viewed as a test that the population 
median is zero. In matched samples, a test that the medians of the two popula-
tions are equal can be computed by first computing difference scores. These 
difference scores would then be used as input to WILCOXON. A general refer-
ence for the methods used is Conover (1980). 

Routine WILCOXON computes statistics for two methods for handling zero 
and tied observations. In the first method, observations within Fuzz of zero are 

Test Null Hypothesis Alternative Hypothesis Action

1 H0 : Pr(x1 < x2) = 0.5 H1 : Pr(x1 < x2) ≠ 0.5 Reject if Stats (9) is less 
than the significance level 
of the test. Alternatively, 
reject the null hypothesis if 
Stats (6) is too large or too 
small.

H0 : E(x1) = E(x2) (H1 : E(x1) ≠ E(x2)) 

2 H0 : Pr(x1 < x2) ≤ 0.5 H1 : Pr(x1 < x2) > 0.5 Reject if Stats (6) is too 
small.

H0 : E(x1) ≥ E(x2) H1 : E(x1) < E(x2)

3 H0 : Pr(x1 < x2) ≥ 0.5

H0 : E(x1) ≤ E(x2)

H1 : Pr(x1 < x2) < 0.5

H1 : E(x1) > E(x2)

Reject if Stats (6) is too 
large.
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not counted, and the average rank of tied observations is used. (Observations 
within Fuzz of each other are said to be tied.) In the second method, observa-
tions within Fuzz of zero are randomly assigned a positive or negative sign, and 
the ranks of tied observations are randomly permuted. 

The W+ and W– statistics are computed as the sums of the ranks of the positive 
observations and the sum of the ranks of the negative observations, respectively. 
Asymptotic probabilities are computed using standard methods (see, e.g., 
Conover 1980, page 282). 

Hypothesis Tests 

The W+ and W– statistics may be used to test the following hypotheses about 
the median, M. In deciding whether to reject the null hypothesis, use the brack-
eted statistic if method 2 for handling ties is preferred. Possible null hypotheses 
and alternatives are given as follows:

•  H0 : M ≤ 0 H1 : M > 0

Reject if stats(0) [or stats(4)] is too large. 

•  H0 : M ≥ 0 H1 : M < 0

Reject if stats(1) [or stats(5)] is too large. 

•  H0 : M = 0 H1 : M ≠ 0

Reject if stats(2) [or stats(6)] is too small. Alternatively, if an asymptotic 
test is desired, reject if 2*stats(3) [or 2*stats(7)] is less than the significance 
level. 

Tabled values of the test statistic can be found in the references. If possible, 
tabled values should be used. If the number of nonzero observations is too 
large, then the asymptotic probabilities computed by WILCOXON can be used. 

Assumptions 

The assumptions required for the hypothesis tests are as follows:

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent. 

3. All Xi’s have the same median. 

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that 
X1 > X3). 
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If other assumptions are made, related hypotheses that are more (or less) restric-
tive can be tested. 

Example 1

The following example is taken from Conover (1980, p. 224). It involves the 
mixing time of two mixing machines using a total of 10 batches of a certain 
kind of batter, five batches for each machine. The null hypothesis is not rejected 
at the 5-percent level of significance. The warning error is always printed when 
one or more ties are detected.

x1 = [7.3, 6.9, 7.2, 7.8, 7.2]

x2 = [7.4, 6.8, 6.9, 6.7, 7.1]

p = WILCOXON(x1, x2, Stats = stats)

% WILCOXON: Warning: AT_LEAST_ONE_TIE.

At least one tie is detected between the 

samples.

PRINT, "p-Value = ", p

p-Value =      0.141238

Example 2

The following example uses the same data as the previous example. Now, all 
the statistics are output in the array Stats. First, a procedure is defined to output 
the results.

PRO print_results, stats

PRINT, ’Wilcoxon W Statistic .....’, $
stats(0)

PRINT, ’2*E(W) - W ...............’, $
stats(1)

PRINT, ’P-Value .....................’, $
stats(2)

PRINT, ’Adjusted Wilcoxon Statistic..’, $
stats(3)

PRINT, ’Adjusted 2*E(W) - W .........’, $
stats(4)

PRINT, ’Adjusted P-Value ............’, $
stats(5)

PRINT, $
’W Statistics for Averaged Ranks ..’, $
stats(6)
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PRINT, $
’Std Error of W (Averaged Ranks) ..’, $
stats(7)

PRINT, $
’Std Normal Score of W (Averaged ’ + $
’Ranks)..’, stats(8)

PRINT, $
’Two-Sided P-Value of W (Averaged ’ + $
’Ranks) ..’, stats(9)

END

x1 = [7.3, 6.9, 7.2, 7.8, 7.2]

x2 = [7.4, 6.8, 6.9, 6.7, 7.1]

p = WILCOXON(x1, x2, Stats = stats)

% WILCOXON: Warning: AT_LEAST_ONE_TIE.

At least one tie is detected between the 

samples.

print_results, stats

Wilcoxon W Statistic .................... 34.0000

2*E(W) - W .............................. 21.0000

P-Value ................................ 0.110072

Adjusted Wilcoxon Statistic ............. 35.0000

Adjusted 2*E(W) - W ..................... 20.0000

Adjusted P-Value ...................... 0.0745036

W Statistics for Averaged Ranks ......... 34.5000

Std Error of W (Averaged Ranks) ......... 4.75803

Std Normal Score of W (Averaged Ranks)... 1.47120

Two-Sided P-Value of W (Averaged Ranks). 0.141238

Example 3 

This example illustrates the application of the Wilcoxon signed rank test to a 
test on a difference of two matched samples (matched pairs) {X1 = 223, 216, 
211, 212, 209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test 
that the median difference is 10.0 (rather than 0.0) is performed by subtracting 
10.0 from each of the differences prior to calling WILCOXON. As can be seen 
from the output, the null hypothesis is rejected. The warning error will always 
be printed when the number of observations is 50 or less unless printing is 
turned off for warning errors. 

PRO output_results, stats 

PRINT, ’Statistic Method 1 Method2’ 

PRINT, ’W+ ...................’, stats(0), stats(4) 
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PRINT, ’W- ...................’, stats(1), stats(5) 

PRINT, ’Standardized Minimum...’, stats(2), stats(6) 

PRINT, ’p-value ...............’, stats(3), stats(7) 

PRINT

PRINT, ’Number of zeros .......’, stats(8)

PRINT, ’Number of ties ........’, stats(9)

END 

x = [-25.0, -21.0, -19.0, -15.0, -13.0, -11.0, -8.0]

p = WILCOXON(x, Fuzz = 0.0001, Stats = stats)

% WILCOXON: Warning: STAT_NOBS_LT_50 

’n-observations’ = 7. The number of observations is less than 
50, and exact tables should be referenced for probabilities. 

OUTPUT_RESULTS, stats

Statistic Method 1 Method 2

W+ .....................0.00000 0.00000

W- .....................28.0000 28.0000

Standardized Minimum ... -2.36643 -2.36643

p-value ................ 0.00898023 0.00898024

Number of zeros .........0.00000

Number of ties ..........0.00000

Warning Errors

STAT_AT_LEAST_ONE_TIE — At least one tie is detected between the 
samples.

Fatal Errors

STAT_ALL_X_Y_MISSING — Each element of x1 and/or x2 is a missing 
NaN (Not a Number) value.
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NCTRENDS Function 
Performs the Noether test for cyclical trend.

Usage

result = NCTRENDS(x)

Input Parameters

x — One-dimensional array containing the data in chronological order.

Returned Value

result — One-dimensional array of length 3 containing the probabilities of 
Nstat(1) or more, Nstat(2) or more, or Nstat(3) or more monotonic sequences. 

If Nstat(0) is less than 1, result(0) is set to NaN (not a number).

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties in computing ranks in the 
combined samples. A tie is declared when two observations in the combined 
sample are within Fuzz of each other.

Default: Fuzz = 0.0.

Output Keywords

Nstat — Named variable into which the one-dimensional array of length 6 con-
taining the statistics below is stored:

Statistics

Nstat (0) The number of consecutive sequences of length three used to 
detect cyclical trend when tying middle elements are eliminated 
from the sequence, and the next consecutive observation is used.

Nstat (1) The number of monotonic sequences of length three in the set 
defined by Nstat(0).
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Nmissing — Named variable into which the number of missing values in x is 
stored.

Discussion

Routine NCTRENDS performs the Noether test for cyclical trend (Noether 
1956) for a sequence of measurements. In this test, the observations are first di-
vided into sets of three consecutive observations. Each set is then inspected, and 
if the set is monotonically increasing or decreasing, the count variable is incre-
mented. 

The count variables, Nstat(1), Nstat(2), and Nstat(3), differ in the manner in 
which ties are handled. A tie can occur in a set (of size three) only if the middle 
element is tied with either of the two ending elements. Tied ending elements are 
not considered. In Nstat(1), tied middle observations are eliminated, and a new 
set of size 3 is obtained by using the next observation in the sample. In 
Nstat(2), the original set of size three is used, and tied middle observations are 
counted as nonmonotonic. In Nstat(3), tied middle observations are counted as 
monotonic. 

The probabilities of occurrence of the counts are obtained from the binomial 
distribution with p = 1/3, where p is the probability that a random sample of 
size three from a continuous distribution is monotonic. The binomial sample 
size is, of course, the number of sequences of size three found (adjusted for 
ties).

Hypothesis test:

H0 : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2 ) ≤ 1/3  H1 : q > 1/3 

Reject if result(0) (or result(1) or result(2) depending on the method used for 
handling ties) is less than the significance level of the test.

Assumption: The observations are independent and are from a continuous distri-

Nstat (2) The number of nonmonotonic sequences where tied threesomes 
are counted as nonmonotonic

Nstat (3) he number of monotonic sequences where tied threesomes are 
counted as monotonic.

Nstat (4) The number of middle observations eliminated because they 
were tied in forming the Nstat(0) sequences.

Nstat (5) The number of tied sequences found in forming the Nstat(2) and 
Nstat(3) sequences. A sequence is called a tied sequence if the 
middle element is tied with either of the two other elements.

Statistics
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bution.

Example

A test for cyclical trend in a sequence of 1000 randomly generated observa-
tions is performed. Because of the sample used, there are no ties and all three 
test statistics yield the same result.

RANDOMOPT, set  =  123457

x  =  RANDOM(1000, /Uniform)

pval  =  NCTRENDS(x, Nstat = nstat)

PM, pval

     0.697881

     0.697881

     0.697881

PM, nstat

         333

         107

         107

         107

           0

           0

CSTRENDS Function 
Performs the Cox and Stuart sign test for trends in location and dispersion.

Usage

result = CSTRENDS(x)

Input Parameters

x — One-dimensional array containing the data in chronological order.

Returned Value

result — One-dimensional array of length 8 containing the probabilities. 

The first four elements of result are computed from two groups of observa-
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tions. 

I result(I)

0 Probability of  Nstat(0) + Nstat(2) or more negative signs (ties are consid-
ered negative).

1 Probability of obtaining  Nstat(1) or more positive signs (ties are considered 
negative).

2 Probability of  Nstat(0) + Nstat(2) or more negative signs (ties are consid-
ered positive).

3 Probability of obtaining Nstat(1) or more positive signs (ties are considered 
positive).

The last four elements of result are computed from three groups of obser-
vations.

4 Probability of  Nstat(0) + Nstat(2) or more negative signs (ties are consid-
ered negative).

5 Probability of obtaining  Nstat(1) or more positive signs (ties are considered 
negative).

6 Probability of  Nstat(0) + Nstat(2) or more negative signs (ties are consid-
ered positive).

7 Probability of obtaining  Nstat(1) or more positive signs (ties are considered 
positive).

Input Keywords

Double — If present and nonzero, double precision is used.

Dispersion — A one-dimensional array of length 2. If Dispersion is set, the 
Cox and Stuart tests for trends in dispersion are computed. Otherwise, as de-
fault, the Cox and Stuart tests for trends in location are computed.  k = Disper-
sion(0) is the number of consecutive x elements to be used to measure 
dispersion. If ids = Dispersion(1) is zero, the range is used as a measure of dis-
persion. Otherwise, the centered sum of squares is used. 

Fuzz — A nonnegative constant used to determine when elements in x are tied.  
If |x(i) – x(j)| is less than or equal to Fuzz, x(i) and x(j) are said to be tied. Fuzz 
must be nonnegative. 

Default: Fuzz = 0.0.
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Output Keywords

Nstat — Named variable into which the one-dimensional array of length 8 con-
taining the statistics below is stored: 

I Nstat(I)

0 Number of negative differences (two groups)

1 Number of positive differences (two groups)

2 Number of zero differences (two groups)

3 Number of differences used to calculate result(0) through result(3) 
(two groups).

4 Number of negative differences (three groups)

5 Number of positive differences (three groups)

6 Number of zero differences (three groups)

7 Number of differences used to calculate result(4) through result(7) (three 
groups).

Nmissing — Named variable into which the number of missing values in x is 
stored.

Discussion

Function CSTRENDS tests for trends in dispersion or location in a sequence of 
random variables depending upon the usage of Dispersion.  A derivative of the 
sign test is used (see Cox and Stuart 1955).

Location Test

For the location test (Default) with two groups, the observations are first divid-
ed into two groups with the middle observation thrown out if there are an odd 
number of observations. Each observation in group one is then compared with 
the observation in group two that has the same lexicographical order. A count is 
made of the number of times a group-one observation is less than (Nstat(0)), 
greater than (Nstat(1)), or equal to (Nstat(2)), its counterpart in group two. Two 
observations are counted as equal if they are within Fuzz of one another.

In the three-group test, the observations are divided into three groups, with the 
center group losing observations if the division is not exact. The first and third 
groups are then compared as in the two-group case, and the counts are stored in 
Nstat(4) through Nstat(6).

Probabilities in result are computed using the binomial distribution with sample 
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size equal to the number of observations in the first group (Nstat(3) or 
Nstat(7)), and binomial probability p = 0.5.

Dispersion Test

The dispersion tests (when keyword Dispersion is set) proceed exactly as with 
the tests for location, but using one of two derived dispersion measures. The in-
put value k = Dispersion(0) is used to define N_ELEMENTS(x)/k groups of 
consecutive observations starting with observation 1. The first k observations 
define the first group, the next k observations define the second group, etc., 
with the last observations omitted if N_ELEMENTS(x) is not evenly divisible 
by k.  A dispersion score is then computed for each group as either the range 
(ids = 0), or a multiple of the variance (ids ≠ 0) of the observations in the 
group. The dispersion scores form a derived sample. The tests proceed on the 
derived sample as above.

Ties

Ties are defined as occurring when a group one observation is within Fuzz of its 
last group counterpart. Ties imply that the probability distribution of x is not 
strictly continuous, which means that Pr(x1 > x2) ≠ 0.5 under the null hypothesis 
of no trend (and the assumption of independent identically distributed observa-
tions). When ties are present, the computed binomial probabilities are not ex-
act, and the hypothesis tests will be conservative.

Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the cor-
responding observation in group 2 (two groups) or group 3 (three groups).

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 

H1 : Pr(Xi > Xj) < Pr(Xi < Xj) 
Hypothesis of upward trend. Reject if result(2) (or result(6))is less than the 
significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 

H1 : Pr(Xi > Xj) > Pr(Xi < Xj)

Hypothesis of downward trend. Reject if result(1) (or result(5)) is less than 
the significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) ≠ Pr(Xi < Xj) 

Two tailed test. Reject if 2 max(result(1), result(2)) (or 2 max(result(5), re-
sult(6)) is less than the significance level.
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Assumptions

1. The observations are a random sample; i.e., the observations are indepen-
dently and identically distributed.

2. The distribution is continuous.

Example

This example illustrates both the location and dispersion tests. The data, which 
are taken from Bradley (1968), page 176, give the closing price of AT&T on 
the New York stock exchange for 36 days in 1965. Tests for trends in location 
(Default), and for trends in dispersion (Dispersion) are performed. Trends in lo-
cation are found.

x  =  [9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, $

       8.25, 8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, $

       7.75,7.75, 7.75, 8.0, 7.5,7.5, 7.125, 7.25, 7.25, 7.125, 
$

       6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625,7.125, 7.75]

k  =  2

ids  =  0

pstat = CSTRENDS(x, Nstat = nstat)

% CSTRENDS: Warning: STAT_AT_LEAST_ONE_TIE

        At least one tie is detected between the samples.

PM, nstat, Title = "         NSTAT"

         NSTAT

           0

          17

           1

          18

           0

          12

           0

          12

PM, pstat, Title = "      PSTAT"

      PSTAT

     0.999996

  7.24792e-05

      1.00000

  3.81470e-06

      1.00000
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  0.000244141

      1.00000

  0.000244141

pstat = CSTRENDS(x, Nstat = nstat, Dispersion = [k, ids])

% CSTRENDS: Warning: STAT_AT_LEAST_ONE_TIE

        At least one tie is detected between the samples.

PM, nstat, Title = "         NSTAT"

         NSTAT

           4

           3

           2

           9

           4

           2

           0

           6

PM, pstat, Title = "      PSTAT"

      PSTAT

     0.253906

     0.910156

     0.746094

     0.500000

     0.343750

     0.890625

     0.343750

     0.890625

TIE_STATS Function 
Computes tie statistics for a sample of observations.

Usage

result = TIE_STATS(x)

Input Parameters 

x — One-dimensional array containing the observations.  x must be ordered 
monotonically increasing with all missing values removed.
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Returned Value

result — One-dimensional array of length 4 containing the tie statistics.

where tj is the number of ties in the j-th group (rank) of ties, and τ is the number 
of tie groups in the sample.

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties. Observations i and j are 
tied if the successive differences x(k + 1) – x(k) between observations i and j, 
inclusive, are all less than Fuzz.

Default:  Fuzz = 0.0

Discussion

Function TIE_STATS computes tie statistics for a monotonically increasing 
sample of observations. “Tie statistics” are statistics that may be used to correct 
a continuous distribution theory nonparametric test for tied observations in the 
data. Observations i and j are tied if the successive differences x(k + 1) − x(k), 
inclusive, are all less than Fuzz. Note that if each of the monotonically increas-
ing observations is equal to its predecessor plus a constant, if that constant is 
less than Fuzz, then all observations are contained in one tie group. For exam-
ple, if Fuzz = 0.11, then the following observations are all in one tie group.

0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

result(0)

result(1)

result(2)

result(3)

= −

= − +

= − +

= − −

=

=

=

=

∑

∑

∑

∑

t t

t t t

t t t

t t t

j j
j

j j j
j

j j
j

j

j j
j

j

1 2

1 1 12

1 2 5

1 2

1

1

1

1

� �

� �� �

� �� �

� �� �

τ

τ

τ

τ

/

/
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Example

We want to compute tie statistics for a sample of length 7.

fuzz  =  0.001

x  =  [1.0, 1.0001, 1.0002, 2.0, 3.0, 3.0, 4.0]

tstat  =  TIE_STATS(x, Fuzz = fuzz)

PRINT, tstat

     4.00000      2.50000      84.0000      6.00000

KW_TEST Function 
Performs a Kruskal-Wallis test1 for identical population medians.

Usage

result = KW_TEST(n, y)

Input Parameters

n — One-dimensional array containing the number of responses for each of the 
groups.

y — One-dimensional array of length N_ELEMENTS(n) that contains the re-
sponses for each of the groups.  y must be sorted by group, with the n(0) obser-
vations in group 1 coming first, the n(1) observations in group two coming 
second, and so on.

Returned Value

result — One-dimensional array of length 4 containing the Kruskal-Wallis sta-
tistics. 

I result(I)

0 Kruskal-Wallis H statistic.

1 Asymptotic probability of a larger H under the null hypothesis of identi-
cal    population medians.

2 H corrected for ties.

3 Asymptotic probability of a larger H (corrected for ties) under the null hy-
pothesis of identical populations
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Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties in y.  If (after sorting) 
|y(i) – y(i + 1)| is less than or equal to Fuzz, then a tie is counted.

Default: Fuzz = 0.0

Discussion

The function KW_TEST  generalizes the Wilcoxon two-sample test computed 
by function WILCOXON (page 300) to more than two populations. It com-
putes a test statistic for testing that the population distribution functions in each 
of K populations are identical. Under appropriate assumptions, this is a nonpara-
metric analogue of the one-way analysis of variance. Since more than two sam-
ples are involved, the alternative is taken as the analogue of the usual analysis 
of variance alternative, namely that the populations are not identical.

The calculations proceed as follows: All observations are ranked regardless of 
the population to which they belong. Average ranks are used for tied observa-
tions (observations within Fuzz of each other). Missing observations (observa-
tions equal to NaN, not a number) are not included in the ranking. Let Ri denote 
the sum of the ranks in the i-th population. The test statistic H is defined as:

where N is the total of the sample sizes, ni is the number of observations in the 

i-th sample, and S2 is computed as the (bias corrected) sample variance of the 
Ri. 

The null hypothesis is rejected when result(3) (or result(1)) is less than the sig-
nificance level of the test. If the null hypothesis is rejected, then the procedures 
given in Conover (1980, page 231) may be used for multiple comparisons. The 
function KW_TEST computes asymptotic probabilities using the chi-squared 
distribution when the number of groups is 6 or greater, and a Beta approxima-
tion (see Wallace 1959) when the number of groups is 5 or less. Tables yielding 
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exact probabilities in small samples may be obtained from Owen (1962).

Example

The following example is taken from Conover (1980, page 231). The data rep-
resents the yields per acre of four different methods for raising corn. Since 
H = 25.5, the four methods are clearly different. The warning error is always 
printed when the Beta approximation is used, unless printing for warning errors 
is turned off. 

y  =  [83.0, 91.0, 94.0, 89.0, 89.0, 96.0, 91.0, 92.0, 90.0, $

       91.0, 90.0, 81.0, 83.0, 84.0, 83.0, 88.0, 91.0, 89.0, $

       84.0, 101.0, 100.0, 91.0, 93.0, 96.0, 95.0, 94.0, 78.0, 
$

       82.0, 81.0, 77.0, 79.0, 81.0, 80.0, 81.0]

n  =  [9, 10, 7, 8]

fuzz  =  0.001

rlabel  =  ["H (no ties)      =", $

            "Prob (no ties)   =", $

            "H (ties)         =", $

            "Prob (ties)      ="]

s = KW_TEST(n, y, Fuzz = fuzz)

% KTRENDS: Warning: <unknown error>

        Error code 30046.

FOR i  =  0, 3 DO $

   PM, rlabel(i), s(i), Format = "(A18, F6.2)"

H (no ties)      = 25.46

Prob (no ties)   =  0.00

H (ties)         = 25.63

Prob (ties)      =  0.00

FRIEDMANS_TEST Function 
Performs Friedman’s test for a randomized complete block design.

Usage

result = FRIEDMANS_TEST(y)
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Input Parameters

y — Two-dimensional array containing the observations. The first row of y con-
tain the observations on treatments 1, 2, …, N_ELEMENTS(y(0, *)) in the first 
block. The second row of y contain the observations in the second block, etc., 
and so on.

Returned Value

results — The Chi-squared approximation of the asymptotic p-value for Fried-
man’s two-sided test statistic. 

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties. In the ordered observa-
tions, if |y(i) –y(i + 1)| is less than or equal to Fuzz, then y(i) and y(i + 1) are 
said to be tied.  

Default: Fuzz = 0.0.

Alpha — Critical level for multiple comparisons.  Alpha should be between 0 
and 1 exclusive.  

Default: Alpha = 0.05.

Output Keywords

Stats — Named variable into which the one-dimensional array of length 6 con-
taining the Friedman statistics below is stored.  Probabilities reported are com-
puted under the appropriate null hypothesis.

I Stats(I)

0 Friedman two-sided test statistic.

1 Approximate F value for Stats(0).

2 Page test statistic for testing the ordered alternative that the median of treat-
ment i is less than or equal to the median of treatment i + 1, with strict ine-
quality holding for some i.

3 Asymptotic p-value for Stats(0). Chi-squared approximation.

4. Asymptotic p-value for Stats(1). F approximation.

5 Asymptotic p-value for Stats(2). Normal approximation.
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Sum_Rank — Named varaible into which a one-dimensional array of length 
N_ELEMENTS(x(0, *)) containing the sum of the ranks of each treatment is 
stored.

Diff — Named variable into which the minimum absolute difference in two ele-
ments of Sum_Rank to infer at the Alpha level of significance that the medians 
of the corresponding treatments are different is stored.

Discussion

Function FRIEDMANS_TEST may be used to test the hypothesis of equality of 
treatment effects within each block in a randomized block design. No missing 
values are allowed. Ties are handled by using the average ranks. The test statis-
tic is the nonparametric analogue of an analysis of variance F test statistic. 

The test proceeds by first ranking the observations within each block. Let A de-
note the sum of the squared ranks, i.e., let

where Rank(Yij) is the rank of the i-th observation within the j-th block, b is the 
number of blocks, and k is the number of treatments. Let

where 
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The Friedman test statistic (Stats(0)) is given by:

that, under the null hypothesis, has an approximate chi-squared distribution with 
k – 1 degrees of freedom. The asymptotic probability of obtaining a larger chi-
squared random variable is returned in Stats(3). 

If the F distribution is used in place of the chi-squared distribution, then the 
usual oneway analysis of variance F-statistic computed on the ranks is used. 
This statistic, reported in Stats(1), is given by 

and asymptotically follows an F distribution with (k – 1) and (b –1)(k – 1) de-
grees of freedom under the null hypothesis. Stats(4) is the asymptotic probabili-
ty of obtaining a larger F random variable. (If A = B, Stats(0) and Stats(1) are 
set to machine infinity, and the significance levels are reported as k!/(k!)b, un-
less this computation would cause underflow, in which case the significance 
levels are reported as zero.) Iman and Davenport (1980) discuss the relative ad-
vantages of the chi-squared and F approximations. In general, the F approxima-
tion is considered best. 

The Friedman T statistic is related both to the Kendall coefficient of concor-
dance and to the Spearman rank correlation coefficient. See Conover (1980) for 
a discussion of the relationships. 

If, at the α = Alpha level of significance, the Friedman test results in rejection 
of the null hypothesis, then an asymptotic test that treatments i and j are differ-
ent is given by: reject H0 if |Ri − Rj| > D, where

where t has (b – 1)(k – 1) degrees of freedom. Page’s statistic (Stats(2)) is used 
to test the same null hypothesis as the Friedman test but is sensitive to a mono-
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tonic increasing alternative. The Page test statistic is given by

It is largest (and thus most likely to reject) when the Ri are monotonically in-
creasing.

Assumptions

The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually inde-
pendent (i.e., the results within one block have no effect on the results with-
in another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of the random variables within each 
block is equally likely. The alternative is that at least one of the treatments 
tends to have larger values than one or more of the other treatments. The Fried-
man test is a test for the equality of treatment means or medians.

Example

The following example is taken from Bradley (1968), page 127, and tests the 
hypothesis that 4 drugs have the same effects upon a person’s visual acuity. 
Five subjects were used.

y  =  TRANSPOSE([[0.39, 0.55, 0.33, 0.41], $

                 [0.21, 0.28, 0.19, 0.16], $

                 [0.73, 0.69, 0.64, 0.62], $

                 [0.41, 0.57, 0.28, 0.35], $

                 [0.65, 0.57, 0.53, 0.60]])

fuzz  =  0.001

p  =  FRIEDMANS_TEST(y, Fuzz = fuzz, Diff = diff, $

                        Sum_Rank = sr, Stats = stat)

PM, stat, Title = "STATS"

STATS

      8.28000

      4.92857

      111.000

Q jRi
i

k
=

=
∑

1
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    0.0405658

    0.0185906

     0.984954

PM, diff, Title = "DIFF"

DIFF

      6.65638

PM, sr, Title = "Sum_Rank"

Sum_Rank

      16.0000

      17.0000

      7.00000

      10.0000

The Friedman null hypothesis is rejected at the α = 0.05 while the Page null hy-
pothesis is not. (A Page test with a monotonic decreasing alternative would be 
rejected, however.) Using Sum_Rank and Diff, one can conclude that treatment 
3 is different from treatments 1 and 2, and that treatment 4 is different from 
treatment 2, all at the α= 0.05 level of significance.

COCHRANQ Function 
Performs a Cochran Q test for related observations.

Usage

result = COCHRANQ(x)

Input Parameters

x — Two-dimensional array containing the matrix of dichotomized data.

Returned Value

result — The p-value for the Cochran Q statistic.

Input Keywords

Double — If present and nonzero, double precision is used.
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Output Keywords

Q — Named variable into which the Cochran’s Q statistic is stored.

Discussion

Function COCHRANQ computes the Cochran Q test statistic that may be used 
to determine whether or not M matched sets of responses differ significantly 
among themselves. The data may be thought of as arising out of a randomized 
block design in which the outcome variable must be success or failure, coded as 
1.0 and 0.0, respectively. Within each block, a multivariate vector of 1’s of 0’s 
is observed. The hypothesis is that the probability of success within a block 
does not depend upon the treatment.

Assumptions

1. The blocks are a random sample from the population of all possible blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis

The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.
H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.
H0:pi1 = pi2 = … = pic for each i.

H1:pij ≠ pik for some i, and some j ≠ k.
where c (equal to N_ELEMENTS(x(0, *))) is the number of treatments.

The null hypothesis is rejected if Cochrans’s Q statistic is too large.

Remarks

1. The input data must consist of zeros and ones only. For example, let 
n_variables = N_ELEMENTS(x(0, *)) and n_observations = 
N_ELEMENTS(x(*, 0)), then the data may be pass-fail information on 
n_variables questions asked of n_observations people or the test responses 
of n_observations individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with 
n_variables − 1 degrees of freedom if n_observations is not too small. 
n_observations greater than or equal to 5 × n_variables is a conservative 
recommendation.
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Example

The following example is taken from Siegal (1956, p. 164). It measures the re-
sponses of 18 women to 3 types of interviews.

x  =  TRANSPOSE([[0.0, 0.0, 0.0], [1.0, 1.0, 0.0], $

                 [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], $

                 [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], $

                 [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], $

                 [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], $

                 [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], $

                 [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], $

                 [1.0, 1.0, 0.0], [1.0, 1.0, 1.0], $

                 [1.0, 1.0, 0.0], [1.0, 1.0, 0.0]])

pq  =  COCHRANQ(x)

PRINT, "pq =", pq

pq =  0.000240266

Warning Errors

STAT_ALL_0_OR_1 — “x” consists of either all ones or all zeros. “q” is set 
to NaN (not a number). “result” is set to 1.0.

Fatal Errors

STAT_INVALID_X_VALUES — “x(#, #)” = #. “x” must consist of zeros and 
ones only.

KTRENDS Function 
Performs a k-sample trends test against ordered alternatives.

Usage

result = KTRENDS(n, y)

Input Parameters

n — One-dimensional array containing the number of responses for each of the 
groups.
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y — One-dimensional array that contains the responses for each of the groups. y 
must be sorted by group, with the n(0) observations in group 1 coming first, the 
n(1) observations in group two coming second, and so on.

Returned Value

result — One-dimensional array of length 17 containing the test results. 

I result(I)

0 Test statistic (ties are randomized).

1 Conservative test statistic with ties counted in favor of the null hypothesis.

2 p-value associated with result(0).

3 p-value associated with result(1).

4 Continuity corrected result(2).

5 Continuity corrected result(3).

6 Expected mean of the statistic.

7 Expected kurtosis of the statistic. (The expected skewness is zero.)

8 Total sample size.

9 Coefficient of rank correlation based upon result(0).

10 Coefficient of rank correlation based upon result(1).

11 Total number of ties between samples.

12 The t-statistic associated with result(2).

13 The t-statistic associated with result(3).

14 The t-statistic associated with result(4).

15 The t-statistic associated with result(5).

16 Degrees of freedom for each t-statistic.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function KTRENDS performs a k-sample trends test against ordered alterna-
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tives. The alternative to the null hypothesis of equality is that F1(X) < F2(X) < 
… Fk(X), where F1, F2, etc., are cumulative distribution functions, and the oper-
ator < implies that the less than relationship holds for all values of x.  While the 
trends test used in KTRENDS requires that the background populations be con-
tinuous, ties occurring within a sample have no effect on the test statistic or as-
sociated probabilities. Ties between samples are important, however. Two 
methods for handling ties between samples are used. These are:

1. Ties are randomly split (result(0)).

2. Ties are counted in a manner that is unfavorable to the alternative hypothe-
sis (result(1)).

Computational Procedure

Consider the matrices 

where Xki is the i-th observation in the k-th population, Xmj is the j-th observa-
tion in the m-th population, and each matrix Mkm is nk by nm where ni = n(i). 
Let Skm denote the sum of all elements in Mkm. Then, result(1) is computed as 
the sum over all elements in Skm, minus the expected value of this sum (com-
puted as

when there are no ties and the distributions in all populations are equal). In re-
sult(0), ties are broken randomly, and the element in the summation is taken as 
2.0 or 0.0 depending upon the result of breaking the tie. 

Result(2) and result(3) are computed using the t distribution. The probabilities 
reported are asymptotic approximations based upon the t statistics in result(12) 
and result(13), which are computed as in Jonckheere (1954, page 141). 
Similarly, result(4) and result(5) give the probabilities for result(14) and re-
sult(15), the continuity corrected versions of result(2) and result(3). The degrees 
of freedom for each t statistic (result(16)) are computed so as to make the t dis-
tribution selected as close as possible to the actual distribution of the statistic 
(see Jonckheere 1954, page 141). 
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Result(6), the variance of the test statistic result(0), and result(7), the kurtosis of 
the test statistic, are computed as in Jonckheere (1954, page 138). The coeffi-
cients of rank correlation in result(8) and result(9) reduce to the Kendall τ sta-
tistic when there are just two groups. 

Exact probabilities in small samples can be obtained from tables in Jonckheere 
(1954). Note, however, that the t approximation appears to be a good one.

Assumptions

1. The Xmi for each sample are independently and identically distributed ac-

cording to a single continuous distribution.

2. The samples are independent.

Hypothesis tests

H0 : F1(X) ≥ F2(X) ≥ … ≥ Fk(X) 
H1 : F1(X) < F2(X) < … < Fk(X) 
Reject if result(2) (or result(3), or result(4) or result(5), depending upon the 
method used) is too large.

Example

The following example is taken from Jonckheere (1954, page 135). It involves 
four observations in four independent samples.

y  =  [19.0, 20.0, 60.0, 130.0, 21.0, 61.0, 80.0, 129.0, $

       40.0, 99.0, 100.0, 149.0, 49.0, 110.0, 151.0, 160.0]

n  =  [4,  4,  4,  4]

rlabel  =  ["stat(0) - Test Statistic (random) .............", $

            "stat(1) - Test Statistic (null hypothesis) ....", 
$

            "stat(2) - p-value for stat(0) .................", 
$

            "stat(3) - p-value for stat(1) .................", 
$

            "stat(4) - Continuity corrected for stat(2) ....", 
$

            "stat(5) - Continuity corrected for stat(3) ....", 
$

            "stat(6) - Expected mean .......................", 
$

            "stat(7) - Expected kurtosis ...................", 
$
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            "stat(8) - Total sample size ...................", 
$

            "stat(9) - Rank corr. coef. based on stat(0) ...", 
$

            "stat(10)- Rank corr. coef. based on stat(1) ...", 
$

            "stat(11)- Total number of ties ................", 
$

            "stat(12)- t-statistic associated w/stat(2) ....", 
$

            "stat(13)- t-statistic associated w/stat(3) ....", 
$

            "stat(14)- t-statistic associated w/stat(4) ....", 
$

            "stat(15)- t-statistic associated w/stat(5) ....", 
$

            "stat(16)- Degrees of freedom .................."]

s  =  KTRENDS(n, y)

FOR i  =  0, 16 DO $

   PM, rlabel(i), s(i), Format = "(A45, F10.5)"

stat(0) - Test Statistic (random) ...........  46.00000

stat(1) - Test Statistic (null hypothesis) ..  46.00000

stat(2) - p-value for stat(0) ...............   0.01483

stat(3) - p-value for stat(1) ...............   0.01483

stat(4) - Continuity corrected for stat(2) ..   0.01683

stat(5) - Continuity corrected for stat(3) ..   0.01683

stat(6) - Expected mean ..................... 458.66666

stat(7) - Expected kurtosis .................  -0.15365

stat(8) - Total sample size .................  16.00000

stat(9) - Rank corr. coef. based on stat(0) .   0.47917

stat(10)- Rank corr. coef. based on stat(1) .   0.47917

stat(11)- Total number of ties ..............   0.00000

stat(12)- t-statistic associated w/stat(2) ..   2.26435

stat(13)- t-statistic associated w/stat(3) ..   2.26435

stat(14)- t-statistic associated w/stat(4) ..   2.20838

stat(15)- t-statistic associated w/stat(5) ..   2.20838

stat(16)- Degrees of freedom ................  36.04963
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Introduction
The routines in this chapter are used to test for goodness of fit and randomness. 
The goodness-of-fit tests are described in Conover (1980). There are two good-
ness-of-fit tests for general distributions, a Kolmogorov-Smirnov test and a chi-
squared test. The user supplies the hypothesized cumulative distribution func-
tion for these two tests. There are three routines that can be used to test specifi-
cally for the normal or exponential distributions.

The tests for randomness are often used to evaluate the adequacy of pseudoran-
dom number generators. These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities 
in small to moderate sample sizes. The chi-squared goodness-of-fit test may be 
used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow 
for missing values (NaN, not a number) in the input data. The routines that test 
for randomness do not allow for missing values.

CHISQTEST Function 
Performs a chi-squared goodness-of-fit test.

Usage

result = CHISQTEST(f, n_categories, x)

Input Parameters

f — Scalar string specifying a user-supplied function. Function f accepts one 
scalar parameter and returns the hypothesized, cumulative distribution function 
at that point.

n_categories — Number of cells into which the observations are to be tallied.

x — One-dimensional array containing the vector of data elements for this test.

Returned Value 

result — The p-value for the goodness-of-fit chi-squared statistic.
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Input Keywords

Double — If present and nonzero, double precision is used.

N_Params_Estimated — Number of parameters estimated in computing the 
cumulative distribution function.

Equal_Cutpoints — If present and nonzero, equal probability cutpoints are 
used. Keywords Equal_Cutpoints and Cutpoints cannot be used together. 

Cutpoints — Specifies the named variable containing user-defined cutpoints to 
be used by CHISQTEST. Keywords Cutpoints and Equal_Cutpoints cannot be 
used together. 

Frequencies — Named variable into which the array containing the vector fre-
quencies for the observations stored in x is stored.

Lower_Bound — Lower bound of the range of the distribution. If Lower Bound 
= Upper Bound, a range on the whole real line is used (the default). If the 
lower and upper endpoints are different, points outside of the range of these 
bounds are ignored. Distributions conditional on a range can be specified when 
Lower_Bound and Upper_Bound are used. If Lower_Bound is specified, then 
Upper_Bound also must be specified. By convention, Lower_Bound is excluded 
from the first interval, but Upper_Bound is included in the last interval.

Upper_Bound — Upper bound of the range of the distribution. If Lower Bound 
= Upper Bound, a range on the whole real line is used (the default). If the 
lower and upper endpoints are different, points outside of the range of these 
bounds are ignored. Distributions conditional on a range can be specified when 
Lower_Bound and Upper_Bound are used. If Upper_Bound is specified, then 
Lower_Bound also must be specified. By convention, Lower_Bound is excluded 
from the first interval, but Upper_Bound is included in the last interval.

Output Keywords

Used_Cutpoints — Specifies the named variable into which the cutpoints to be 
used by CHISQTEST are stored.

Chi_Squared — Named variable into which the chi-squared test statistic is 
stored.

Df — Named variable into which the degrees of freedom for the chi-squared 
goodness-of-fit test are stored.

Cell_Counts — Named variable into which the cell counts are stored. The cell 
counts are the observed frequencies in each of the n_categories cells.
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Cell_Expected — Named variable into which the cell expected values are 
stored. The expected value of a cell is the expected count in the cell given that 
the hypothesized distribution is correct.

Cell_Chisq — Named variable into which an array of length n_categories con-
taining the cell contributions to chi-squared are stored.

Discussion

Function CHISQTEST performs a chi-squared goodness-of-fit test that a ran-
dom sample of observations is distributed according to a specified theoretical 
cumulative distribution. The theoretical distribution, which may be continuous, 
discrete, or a mixture of discrete and continuous distributions, is specified by 
the user-defined function f. Because the user is allowed to give a range for the 
observations, a test that is conditional upon the specified range is performed.

Parameter n_categories gives the number of intervals into which the observa-
tions are to be divided. By default, equiprobable intervals are computed by 
CHISQTEST, but intervals that are not equiprobable can be specified (through 
the use of keyword Cutpoints).

Regardless of the method used to obtain the cutpoints, the intervals are such 
that the lower endpoint is not included in the interval, while the upper endpoint 
is always included. If the cumulative distribution function has discrete elements, 
then user-provided cutpoints should always be used since CHISQTEST cannot 
determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are –
infinity and +infinity. The endpoints can be specified by using the keywords 
Lower_Bound and Upper_Bound.

A tally of counts is maintained for the observations in x as follows:

•  If the cutpoints are specified by the user, the tally is made in the interval to 
which xi belongs using the endpoints specified by the user.

•  If the cutpoints are determined by CHISQTEST, then the cumulative proba-
bility at xi, F(xi), is computed by the function f.

The tally for xi is made in interval number

, 

where m = n categories  and 

mF xi( ) 1+
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is the function that takes the greatest integer that is no larger than the parame-
ter of the function. Thus, if the computer time required to calculate the 
cumulative distribution function is large, user-specified cutpoints may be pre-
ferred in order to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the 
chi-squared approximation may be suspect. A warning message to this effect is 
issued in this case, as well as when an expected value is less than 5.

Programming Notes 

The user must supply a function f with calling sequence F(y) that returns the 
value of the cumulative distribution function at any point y in the (optionally) 
specified range.

Many of the cumulative distribution functions in this reference manual can be 
used for f. It is, however, necessary to write a user-defined PV-WAVE function 
that calls the CDF, and then pass the name of this user-defined function for f.

Example 

This example illustrates the use of CHISQTEST on a randomly generated sam-
ple from the normal distribution. One-thousand randomly generated 
observations are tallied into 10 equiprobable intervals. In this example, the null 
hypothesis is not rejected.

.RUN

; Define the hypothesized, cumulative distribution function.

- FUNCTION user_cdf, k

-  RETURN, NORMALCDF(k)

- END

RANDOMOPT, Set = 123457

x = RANDOM(1000, /Normal)

; Generate normal deviates.

p_value = CHISQTEST("user_cdf", 10, x)

; Perform chi-squared test.

PM, p_value

⋅
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; Output the results.

0.154603

Warning Errors

STAT_EXPECTED_VAL_LESS_THAN_1 — An expected value is less than 1.

STAT_EXPECTED_VAL_LESS_THAN_5 — An expected value is less than 5.

Fatal Errors

STAT_ALL_OBSERVATIONS_MISSING — All observations contain missing 
values.

STAT_INCORRECT_CDF_1 — Function f is not a cumulative distribution 
function. The value at the lower bound must be nonnegative, and the value at 
the upper bound must not be greater than 1.

STAT_INCORRECT_CDF_2 — Function f is not a cumulative distribution 
function. The probability of the range of the distribution is not positive.

STAT_INCORRECT_CDF_3 — Function f is not a cumulative distribution 
function. Its evaluation at an element in x is inconsistent with either the evalua-
tion at the lower or upper bound.

STAT_INCORRECT_CDF_4 — Function f is not a cumulative distribution 
function. Its evaluation at a cutpoint is inconsistent with either the evaluation at 
the lower or upper bound.

STAT_INCORRECT_CDF_5 — An error has occurred when inverting the 
cumulative distribution function. This function must be continuous and defined 
over the whole real line.
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NORMALITY Function 
Performs a test for normality.

Usage

result = NORMALITY(x)

Input Parameters

x — One-dimensional array containing the observations.

Returned Value

result — The p-value for the Shapiro-Wilk W test or the Lilliefors test for nor-
mality. The Shapiro-Wilk test is the default. If the Lilliefors test is used, 
probabilities less than 0.01 are reported as 0.01, and probabilities greater than 
0.10 for the normal distribution are reported as 0.5; otherwise, an approximate 
probability is computed.

Input Keywords

Double — If present and nonzero, double precision is used.

N_cat — An integer specifying number of cells into which the observations are 
to be tallied. Keywords N_cat, Df, and Chisq must be used together and indicate 
that the chi-squared goodness-of-fit test is to be performed.

Output Keywords

Chisq — Specifies a variable into which the chi-square statistic is stored. Key-
words N_cat, Df, and Chisq must be used together and indicate that the chi-
squared goodness-of-fit test is to be performed.

Df — Specifies a variable into which the degrees of freedom for the test are 
stored.Keywords N_cat, Df and Chisq must be used together and indicate that 
the chi-squared goodness-of-fit test is to be performed.

Shapiro_Wilk — Named variable into which the Shapiro-Wilk W statistic is 
stored. If Shapiro_Wilk is present, then the Shapiro-Wilk W test is performed.

Default: Shapiro-Wilk W test is performed
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Lilliefors — Named variable into which the maximum absolute difference 
between the empirical and the theoretical distributions is stored. If Lilliefors is 
present, then Lilliefors test is performed.

Discussion

Three methods are provided for testing normality: the Chi-Squared test, the Sha-
piro-Wilk W test, and the Lilliefors test.

Chi-Squared Test

This function computes the chi-squared statistic, its p-value, and the degrees of 
freedom of the test. Keyword N_cat finds the number of intervals into which 
the observations are to be divided. The intervals are equiprobable except for the 
first and last interval which are infinite in length. If more flexibility is desired 
for the specification of intervals, the same test can be performed with a call to 
function CHISQTEST using the optional arguments described for that function.

Shapiro-Wilk W Test

D’Agostino and Stevens (1986, p. 406) refer to the Shapiro-Wilk W test as the 
best omnibus tests of normality. The function is based on the approximations 
and code given by Royston (1982a, b, c). It can be used in samples as large as 
2,000 or as small as 3. In the Shapiro and Wilk test, W is given by

where x(i) is the i-th smallest order statistic and

 

is the sample mean. Royston (1982) gives approximations and tabled values that 
can be used to compute the coefficients ai, i = 1, ..., n, and obtains the signifi-
cance level of the W statistic.

Lilliefors Test

This function computes Lilliefors test and its p-values for a normal distribution 
in which both the mean and variance are estimated. The one-sample, two-sided 
Kolmogorov-Smirnov statistic D is first computed. The p-values are then com-
puted using an analytic approximation given by Dallal and Wilkinson (1986). 
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Because Dallal and Wilkinson give approximations in the range (0.01, 0.10) if 
the computed probability of a greater D is less than 0.01, a note is issued and 
the p-value is set to 0.50. Note that because parameters are estimated, p-values 
in Lilliefors test are not the same as in the Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informa-
tional message is printed. A general reference for the Lilliefors test is Conover 
(1980). The original reference for the test for normality is Lilliefors (1967).

Example 1

The following example is taken from Conover (1980, pp. 195, 364). The data 
consists of 50 two-digit numbers taken from a telephone book. The W test fails 
to reject the null hypothesis of normality at the .05 level of significance. For 
this example, the data is stored in ASCII file data.dat and read using procedure 
RMF. The file data.dat contains the following data: 

23 36 54 61 73 23 37 54 61 73 24 40 56 62 74

27 42 57 63 75 29 43 57 64 77 31 43 58 65 81

32 44 58 66 87 33 45 58 68 89 33 48 58 68 93

35 48 59 70 97

OPENR, unit, ’data.dat’, /Get_Lun

RMF, unit, x, 50, 1

CLOSE, unit

p = NORMALITY(x)

PRINT, "P-Value = ", p

P-Value =      0.230858

Example 2

The following example uses the same data as the previous example. Here, the 
Shapiro-Wilk W statistic is output.

OPENR, unit, ’data.dat’, /Get_Lun

RMF, unit, x, 50, 1

CLOSE, unit

p = NORMALITY(x, Shapiro_Wilk = sw)

PRINT, "p-Value                  = ", p

p-Value                  =      0.230858

PRINT, "Shapiro Wilk W Statistic = ", sw

Shapiro Wilk W Statistic =      0.964217
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Warning Errors

STAT_ALL_OBS_TIED— All observations in x are tied.

Fatal Errors

STAT_NEED_AT_LEAST_5 — All but # elements of x are missing. At least 
five nonmissing observations are necessary to continue.

STAT_NEG_IN_EXPONENTIAL — In testing the exponential distribution, an 
invalid element in x is found (x[ ] = #). Negative values are not possible in 
exponential distributions.

STAT_NO_VARIATION_INPUT — There is no variation in the input data. All 
nonmissing observations are tied.

KOLMOGOROV1 Function 
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Usage

result = KOLMOGOROV1(f, x)

Input Parameters

f — Scalar string specifying a user-supplied function to compute the cumula-
tive distribution function (CDF) at a given value.  Parameter f  accepts the fol-
lowing parameter and returns the computed function value at this point:

y — Point at which the function is to be evaluated.

x — One-dimensional array containing the observations.

Returned Value

result — One-dimensional array of length 3 containing  Z, p1, and p 2 .

Input Keywords

Double — If present and nonzero, double precision is used.
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Output Keywords

Differences — Named variable into which an array containing 
Dn , Dn

+, Dn
- is stored.

Nmissing — Named variable into which the number of missing values is stored.

Discussion

The function KOLMOGOROV1 performs a Kolmogorov-Smirnov goodness-of-
fit test in one sample. The hypotheses tested follow:

where F is the cumulative distribution function (CDF) of the random variable, 
and the theoretical CDF, F* , is specified via the user-supplied function f. Let 
n = N_ELEMENTS(x) − Nmissing. The test statistics for both one-sided alterna-
tives 

and

and the two-sided (Dn = Differences(0)) alternative are computed as well as an 
asymptotic z-score (result(0)) and p-values associated with the one-sided (re-
sult(1)) and two-sided (result(2)) hypotheses. For n > 80, asymptotic p-values 
are used (see Gibbons 1971). For n ≤ 80, exact one-sided p-values are comput-
ed according to a method given by Conover (1980, page 350). An approximate 
two-sided test p-value is obtained as twice the one-sided p-value. The approxi-
mation is very close for one-sided p-values less than 0.10 and becomes very bad 
as the one-sided p-values get larger.
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Programming Notes

1. The theoretical CDF is assumed to be continuous. If the CDF is not contin-
uous, the statistics

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data will 
tend to make the p-values associated with the test statistics too liberal. The 
empirical CDF will tend to be closer to the theoretical CDF than it should 
be.

3. No attempt is made to check that all points in the sample are in the support 
of the theoretical CDF. If all sample points are not in the support of the 
CDF, the null hypothesis must be rejected.

Example

In this example, a random sample of size 100 is generated via routine RAN-
DOM for the uniform (0, 1) distribution. We want to test the null hypothesis 
that the CDF is the standard normal distribution with a mean of 0.5 and a vari-
ance equal to the uniform (0, 1) variance (1/12).

FUNCTION l_Cdf,  x

   mean  =  0.5

   std  =  0.2886751

   z  =  (x - mean)/std

   val  =  NORMALCDF(z)

   RETURN, val

END

RANDOMOPT, set  =  123457

x  =  RANDOM(100, /Uniform)

stats  =  KOLMOGOROV1("l_cdf", x, Differences = d, $

                      Nmissing = nm)

PRINT, "D  =", d(0)

D  =     0.147083

PRINT, "D+ =", d(1)

Dn
∗
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D+ =    0.0809559

PRINT, "D- =", d(2)

D- =     0.147083

PRINT, "Z  =", stats(0)

Z  =      1.47083

PRINT, "Prob greater D one sided =", stats(1)

Prob greater D one sided =    0.0132111

KOLMOGOROV2 Function 
Performs a Kolmogorov-Smirnov two-sample test.

Usage

result = KOLMORGOROV2(x, y)

Input Parameters

x — One-dimensional array containing the observations from sample one.

y — One-dimensional array containing the observations from sample two.

Returned Value

result — One-dimensional array of length 3 containing  Z, p1, and p2 .

Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Differences — Named variable into which a one-dimensional array containing 
Dn , Dn

+, Dn
- is stored.

Nmissingx — Named variable into which the number of missing values in the 
x sample is stored.

Nmissingy — Named variable into which the number of missing values in the 
y sample is stored.
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Discussion

Function KOLMOGOROV2 computes Kolmogorov-Smirnov two-sample test 
statistics for testing that two continuous cumulative distribution functions 
(CDF’s) are identical based upon two random samples. One- or two-sided alter-
natives are allowed. If n_observations_x = N_ELEMENTS(x) and 
n_observations_y = N_ELEMENTS(y), then the exact p-values are computed 
for the two-sided test when n_observations_x * n_observations_y is less than 
104. 

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the em-
pirical CDF in the Y sample, where n = n_observations_x  − Nmissingx and 
m = n_observations_y − Nmissingy, and let the corresponding population distri-
bution functions be denoted by F(x) and G(y), respectively. Then, the hypothe-
ses tested by KOLMOGOROV2 are as follows:

The test statistics are given as follows:

Asymptotically, the distribution of the statistic

(returned in result (0)) converges to a distribution given by Smirnov (1939). 

Exact probabilities for the two-sided test are computed when m * n is less than 
or equal to 104, according to an algorithm given by Kim and Jennrich (1973;). 
When m * n is greater than 104, the very good approximations given by Kim 
and Jennrich are used to obtain the two-sided p-values. The one-sided probabili-
ty is taken as one half the two-sided probability. This is a very good approxima-
tion when the p-value is small (say, less than 0.10) and not very good for large 
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p-values.

Example

The following example illustrates the KOLMOGOROV2 routine with two ran-
domly generated samples from a uniform(0,1) distribution. Since the two theo-
retical distributions are identical, we would not expect to reject the null 
hypothesis.

RANDOMOPT, set  =  123457

x  =  RANDOM(100, /Uniform)

y  =  RANDOM(60, /Uniform)

stats  =  KOLMOGOROV2(x, y, Differences = d, Nmissingx = nmx, $

                      Nmissingy = nmy)

PRINT, "D  =", d(0)

D  =     0.180000

PRINT, "D+ =", d(1)

D+ =     0.180000

PRINT, "D- =", d(2)

D- =    0.0100001

PRINT, "Z  =", stats(0)

Z  =      1.10227

PRINT, "Prob greater D one sided =", stats(1)

Prob greater D one sided =    0.0720105

PRINT, "Prob greater D two sided =", stats(2)

Prob greater D two sided =     0.144021

PRINT, "Missing X =", nmx

Missing X =           0

PRINT, "Missing Y =", nmy

Missing Y =           0

MVAR_NORMALITY Function 
Computes Mardia’s multivariate measures of skewness and kurtosis and tests 
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for multivariate normality.

Usage

result = MVAR_NORMALITY(x)

Input Parameters

x — Two-dimensional array containing the data in which 
N_ELEMENTS(x(*,0)) is the number of observations (numbers of rows of data) 
in x and N_ELEMENTS(x(0,*)) is the dimenionality of the multivariate space 
for which the skewness and kurtosis are to be computed (number of variables in 
x).

Returned Value

result — One-dimensional array of size 13 containing output statistics 

I result ( I )

0 estimated skewness

1 expected skewness assuming a multivariate nor-
mal distribution

2 asymptotic chi-squared statistic assuming a multi-
variate normal distribution

3 probability of a greater chi-squared

4 Mardia and Foster's standard normal score for 
skewness

5 estimated kurtosis

6 expected kurtosis assuming a multivariate normal 
distribution

7 asymptotic standard error of the estimated kurtosis

8 standard normal score obtained from result(5) 
through result(7)
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Input Keywords

Double — If present and nonzero, double precision is used.

Frequencies — One-dimensional array containing the frequencies.  Frequencies 
must be an integer value. Default assumes all Frequencies equal one.

Weights — One-dimensional array containing the weights. Weights must be 
non-negative. Default assumes all Weights equal one.

Output Keywords

Sum_Freqs — Named variable into which the sum of the frequencies of all ob-
servations used in the computations is stored.

Sum_Weights — Named variable into which the sum of the weights times the 
frequencies for all observations used in the computations is stored.

Nmissing — Named variable into which the number of rows of data in x con-
taining any missing values (NaN) is stored.

Means — Named variable into which a one-dimensional array of length 
N_ELEMENTS(x(0,*)) containing the sample means is stored.

R_Matrix — Named variable into which an upper triangular array containing 
the Cholesky RTR factorization of the covariance matrix is stored.

Discussion

Function MVAR_NORMALITY computes Mardia’s (1970) measures b1,p 
and b2,p of multivariate skewness and kurtosis, respectfully, for 
p = N_ELEMENTS(x(0,*)).  These measures are then used in computing tests 
for multivariate normality. Three test statistics, one based upon b1,p alone, one 
based upon b2,p alone, and an omnibus test statistic formed by combining nor-

9 p-value corresponding to result(8)

10 Mardia and Foster's standard normal score for 
kurtosis

11 Mardia's SW statistic based upon result(4) and 
result(10)

12 p-value for result(11)
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mal scores obtained from b1,p and b2,p are computed. On the order of np3, 
operations are re-quired in computing b1,p when the method of Isogai (1983) is 
used, where n = N_ELEMENTS(x(*,0)).  On the order of np2, operations are 
required in computing b2,p. 

Let 

where 

fi is the frequency of the i-th observation, and wi is the weight for this observa-
tion. (Weights wi are defined such that xi is distributed according to a multivari-
ate normal, N(µ, Σ/wi) distribution, where Σ is the covariance matrix.) Mardia’s 
multivariate skewness statistic is defined as:

while Mardia’s kurtosis is given as:

Both measures are invariant under the affine (matrix) transformation AX + D, 
and reduce to the univariate measures when p = N_ELEMENTS(x(0,*)) = 1. 
Using formulas given in Mardia and Foster (1983), the approximate expected 
value, asymptotic standard error, and asymptotic p-value for b2,p, and the ap-
proximate expected value, an asymptotic chi-squared statistic, and p-value for 
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the b1,p statistic are computed. These statistics are all computed under the null 
hypothesis of a multivariate normal distribution. In addition, standard normal 
scores W1(b1,p) and W2(b2,p) (different from but similar to the asymptotic nor-
mal and chi-squared statistics above) are computed. These scores are combined 
into an asymptotic chi-squared statistic with two degrees of freedom:

This chi-squared statistic may be used to test for multivariate normality. A 
p-value for the chi-squared statistic is also computed.

Example

In the following example, 150 observations from a 5 dimensional standard nor-
mal distribution are generated via routine RANDOM (Chapter 12, Random 
Number Generation). The skewness and kurtosis statistics are then computed 
for these observations.

m  =  150

n  =  5

RANDOMOPT, set  =  123457

x  =  FLTARR(n, m)

x(*)  =  RANDOM(m*n, /Normal)

x  =  TRANSPOSE(x)

stats  =  MVAR_NORMALITY(x, Sum_Weights = sw, Sum_Freq = sf, $

                         Means = means, R_Matrix = r_mat)

PRINT, "Sum of Frequencies =", sf, Format = "(A25, I4)"

     Sum of Frequencies = 150

PRINT, "Sum of the weights =", sw, Format = "(A25, F8.3)"

     Sum of the weights = 150.000

FOR i  =  0, 12 DO $

      PM, i, stats(i), Format = "(I5, F10.2)"

    0      0.73

    1      1.36

    2     18.62

    3      0.99

S W b W bW p p= +1
2

1 2
2

2, ,� � � �
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    4     -2.37

    5     32.67

    6     34.54

    7      1.27

    8     -1.48

    9      0.14

   10      1.62

   11      8.24

   12      0.02

RANDOMNESS_TEST Function 
Performs a test for randomness.

Usage

result = RANDOMNESS_TEST(x, n_run)

Input Parameters

x — One-dimensional array containing the data.

n_run — Length of longest run for which tabulation is desired.  For keywords 
Pairs_Counts, Dsquare_Counts, and Dcube_Counts, n_run  stands for the num-
ber of equiprobable cells into which the statistics are to be tabulated.

Returned Value 

result — The probability of a larger chi-squared statistic for testing the null hy-
pothesis of a uniform distribution.

Input Keywords

Double — If present and nonzero, double precision is used.

Pairs_Lag — The lag to be used in computing the pairs statistic. Keywords 
Pairs_Lag and Pairs_Counts must be used together. 
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Output Keywords 

Exactly one of these options is used to specify which test is to be performed.

Runs_Counts — Named variable into which an array of size N_ELEMENTS(x) 
containing the counts of the number of runs up each length is stored.  The Runs 
Test is the default test, however, to return the counts and covariances, the 
Runs_Counts keyword must be used. Keywords Runs_Counts and Covariances 
must be used together. Keywords Runs_Counts, Pairs_Counts, 
Dsquare_Counts, and Dcube_Counts can not be used together.

Covariances — Named variable into which an array of size N_ELEMENTS(x) 
by N_ELEMENTS(x) containing the variances and covariances of the counts is 
stored. Keywords Runs_Counts and Covariances must be used together.

Pairs_Counts — Named variable into which an array of size n_run by n_run 
containing the count of the number of pairs in each cell is stored.  The lag to be 
used in computing the pairs statistic is stored in Pairs_Lag. Pairs (X(i), 
X(i + Pairs_Lag)) for i = 0,… , N – Pairs_Lag – 1 are tabulated, where N is 
the total sample size. Keywords Pairs_Counts and Pairs_Lag must be used to-
gether. Keywords Pairs_Counts, Runs_Counts, Dsquare_Counts, and 
Dcube_Counts can not be used together. 

Dsquare_Counts — Named variable into which an array of length n_run con-
taining the tabulations for the d 2 test is stored. Keywords Dsquare_Counts, 
Runs_Counts, Pairs_Counts, and Dcube_Counts can not be used together

Dcube_Counts — Named variable into which an array of length n_run by 
n_run by n_run containing the tabulations for the triplets test is stored. Key-
words Runs_Counts, Pairs_Counts, Dsquare_Counts, and Dcube_Counts can 
not be used together.

Chisq — Named variable into which the Chi-squared statistic for testing the 
null hypothesis of a uniform distribution is stored.

Df — Named variable into which the degrees of freedom for chi-squared is 
stored.

Keyword Test to be Perfprmed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test
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If Runs_Counts is specified: 

Runs_Expect — Named variable into which an array of length n_run contain-
ing the expected number of runs of each length is expected is stored. This key-
word is optional if Runs_Counts is used. 

If Pairs_Counts, Dsquare_Counts, or Dcube_Counts is specified:

Expect — Named variable into which the expected number of counts for each 
cell is stored.  This keyword is optional only if one of the keywords  
Pairs_Counts, Dsquare_Counts, or Dcube_Count is used. Keywords 
Runs_Counts and Expect can not be used together.

Discussion 

Runs Up Test

Function RANDOMNESS_TEST performs one of four different tests for ran-
domness. Input keyword Runs_Counts computes statistics for the runs up test. 
Runs tests are used to test for cyclical trend in sequences of random numbers. If 
the runs down test is desired, each observation should first be multiplied by −1 
to change its sign, and Runs_Counts used with the modified vector of observa-
tions. 

Runs_Counts first tallies the number of runs up (increasing sequences) of each 
desired length. For i = 1, …, r − 1, where r = n_run, Runs_Counts(i) contains 
the number of runs of length i. Runs_Counts(n_run) contains the number of 
runs of length n_run or greater. As an example of how runs are counted, the se-
quence (1, 2, 3, 1) contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, Runs_Counts computes the 
expected values and the covariances of the counts according to methods given 
by Knuth (1981, pages 65(67). Let R denote a vector of length n_run containing 
the number of runs of each length so that the i-th element of R, ri, contains the 
count of the runs of length i. Let ∑R denote the covariance matrix of R under 
the null hypothesis of randomness, and let µR denote the vector of expected val-
ues for R under this null hypothesis, then an approximate chi-squared statistic 
with n_run degrees of freedom is given as 

In general, the larger the value of each element of µR, the better the chi-squared 

χ µ µ2 1= − ∑ −−( ) ( )R RR
T

R R
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approximation.

Pairs Test

Pairs_Counts computes the pairs test (or the Good’s serial test) on a hypothe-
sized sequence of uniform (0,1) pseudorandom numbers. The test proceeds as 
follows. Subsequent pairs (X(i), X(i + Pairs_Lag)) are tallied into a k × k ma-
trix, where k = n_run. In this tally, element (j, m) of the matrix is incremented, 
where

where l = Pairs_Lag, and the notation   represents the greatest integer func-
tion, Y is the greatest integer less than or equal to Y, where Y is a real number. 
If 
l = 1, then i = 1, 3, 5, …, n − 1. If l > 1, then i = 1, 2, 3, …, n − l, where n is 
the total number of pseudorandom numbers input on the current usage of 
Pairs_Counts (i.e., n = N_ELEMENTS(x)). 

Given the tally matrix in Pairs_Counts, chi-squared is computed as

where e = ∑oij/k
2, and oij is the observed count in cell (i, j) (oij = Pairs_Counts

(i, j)). 

Because pair statistics for the trailing observations are not tallied on any call, 
the user should use Pairs_Counts with N_ELEMENTS(x) as large as possible. 
For Pairs_Lag < 20 and  N_ELEMENTS(x) = 2000, little power is lost.

d 2 Test

Dsquare_Counts computes the d 2 test for succeeding quadruples of hypothe-
sized pseudorandom uniform (0, 1) deviates. The d 2 test is performed as fol-
lows. Let X1, X2, X3, and X4 denote four pseudorandom uniform deviates, and 
consider

D2 = (X3 – X1)2 + (X4 – X2)2
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The probability distribution of D2 is given as

when D2 ≤1, where π denotes the value of pi. If D2 > 1, this probability is given 
as

See Gruenberger and Mark (1951) for a derivation of this distribution. 

For each succeeding set of 4 pseudorandom uniform numbers input in x, d 2 and 
the cumulative probability of d 2 (Pr(D 2 ≤ d 2)) are computed. The resulting 
probability is tallied into one of k = n_run equally spaced intervals. 

Let n denote the number of sets of four random numbers input (n = the total 
number of observations/4). Then, under the null hypothesis that the numbers in-
put are random uniform (0, 1) numbers, the expected value for each element in 
Dsquare_Counts is e = n/k. An approximate chi-squared statistic is computed as

where oi = Dsquare_Counts(i) is the observed count. Thus, χ2 has k − 1 degrees 
of freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is 
rejected if χ2 is too large. As n increases, the chi-squared approximation be-
comes better. A useful generalization is that e > 5 yields a good chi-squared ap-
proximation.
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Triplets Test

Dcube_Counts computes the triplets test on a sequence of hypothesized pseudo-
random uniform(0, 1) deviates. The triplets test is computed as follows: 
Each set of three successive deviates, X1, X2, and X3, is tallied into one of m3 
equal sized cubes, where m = n_run. Let i = [mX1] + 1, j = [mX2] + 1, and k = 
[mX3] +  1. For the triplet (X1, X2, X3), Dcube_Counts(i, j, k) is incremented. 

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells 
are equally probable and each has expected value e = n/m3, where n is the num-
ber of triplets tallied. An approximate chi-squared statistic is computed as

where oijk = Dcube_Counts(i, j, k). 

The computed chi-squared has m3– 1 degrees of freedom, and the null hypothe-
sis of pseudorandom uniform (0, 1) deviates is rejected if χ2 is too large.

Example 1

The following example illustrates the use of the runs test on 104 pseudo-ran-
dom uniform deviates. In the example, 2000 deviates are generated for each use 
of Runs_Counts. Since the probability of a larger chi-squared statistic is 0.1872, 
there is no strong evidence to support rejection of this null hypothesis of ran-
domness.

PRO print_results, n_run, num, rc, re, cov, chisq, df, p

   PRINT, "          runs_count"

   PRINT, num + 1, Format = "(6I5)"

   PRINT, rc, Format = "(6I5)"

   PRINT

   PRINT, "                runs_expect"

   PRINT, num + 1, Format = "(6I7)"

   PRINT, re, Format = "(6F7.1)"

   PRINT

   PRINT, "                          covariances"
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   PRINT, num + 1, Format = "(7X, 6I8)"

   FOR i  =  0, n_run - 1 DO $

      PRINT, num(i) + 1, cov(i, *), Format = "(I8, 6F8.1)"

   PRINT

   PRINT, "chisq  =", chisq

   PRINT, "df     =", df

   PRINT, "pvalue =", p

END

nran  =  10000

n_run  =  6

num  =  INDGEN(n_run)

RANDOMOPT, set  =  123457

x  =  RANDOM(nran, /Uniform)

p  =  RANDOMNESS_TEST(x, n_run, Runs_Counts = rc, $

                      Covariances = cov, Chisq = chisq, $

                      Df = df, Runs_Expect = re)

print_results, n_run, num, rc,re,cov,chisq, df, p

          runs_count

    1    2    3    4    5    6

 1709 2046  953  260   55    4

                runs_expect

      1      2      3      4      5      6

 1667.3 2083.4  916.5  263.8   57.5   11.9

                          covariances

              1       2       3       4       5       6

       1  1278.2  -194.6  -148.9   -71.6   -22.9    -6.7

       2  -194.6  1410.1  -490.6  -197.2   -55.2   -14.4

       3  -148.9  -490.6   601.4  -117.4   -31.2    -7.8

       4   -71.6  -197.2  -117.4   222.1   -10.8    -2.6

       5   -22.9   -55.2   -31.2   -10.8    54.8    -0.6

       6    -6.7   -14.4    -7.8    -2.6    -0.6    11.7
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chisq  =      8.76515

df     =      6.00000

pvalue =     0.187223

Example 2

The following example illustrates the calculations of the Pairs_Counts statistics 
when a random sample of size 104 is used and the Pairs_Lag is 1. The results 
are not significant.

PRO print_results, n_run, num, pc, expect, chisq, df, p

   PRINT, "                        pairs_count"

   PRINT, num + 1, Format = "(5X, 10I5)"

   FOR i  =  0, n_run - 1 DO $

      PRINT, num(i) + 1, pc(i, *), Format = "(I5, 10I5)"

   PRINT

   PRINT, "expect  =", expect

   PRINT, "chisq   =", chisq

   PRINT, "df      =", df

   PRINT, "pvalue  =", p

END

nran  =  10000

n_run  =  10

num  =  INDGEN(n_run)

lag  =  5

RANDOMOPT, set  =  123467

x  =  RANDOM(nran, /Uniform)

p  =  RANDOMNESS_TEST(x, n_run, Pairs_Counts = pc, $

                      Pairs_Lag = lag, Chisq = chisq, $

                      Df = df, Expect = expect)

print_results, n_run, num, pc, expect, chisq, df, p

                        pairs_count

         1    2    3    4    5    6    7    8    9   10
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    1  112   82   95  118  103  103  113   84   90   74

    2  104  106  109  108  101   98  102   92  109   88

    3   88  111   86  106  112   79  103  105  106  101

    4   91  110  108   92   88  108  113   93  105  114

    5  104  105  103  104  101   94   96   87   93  104

    6   98  104  103  104   79   89   92  104   92  100

    7  103   91   97  101  116   83  118  118  106   99

    8  105  105  111   91   93   82  100  104  110   89

    9   92  102   82  101   94  128  102  110  125   98

   10   79   99  103   98  104  101   93   93   98  105

expect  =      99.9500

chisq   =      104.860

df      =      99.0000

pvalue  =     0.324242

Example 3

In the following example, 2000 observations generated using the routine RAN-
DOM are input to Dsquare_Counts in one call.  In the example, the null hy-
pothesis of a uniform distribution is not rejected.

PRO print_results, n_run, num, dc, expect, chisq, df, p

   PRINT, "          dsquare_counts"

   PRINT, num + 1, Format = "(6I5)"

   PRINT, dc, Format = "(6I5)"

   PRINT

   PRINT, "expect  =", expect

   PRINT, "chisq   =", chisq

   PRINT, "df      =", df

   PRINT, "pvalue  =", p

END

nran  =  2000

n_run  =  6



RANDOMNESS_TEST Function  361

num  =  INDGEN(n_run)

RANDOMOPT, set  =  123457

x  =  RANDOM(nran, /Uniform)

p  =  RANDOMNESS_TEST(x, n_run, Chisq = chisq, Df = df, $

                      Expect = expect, Dsquare_Counts = dc)

print_results, n_run, num, dc, expect, chisq, df, p

          dsquare_counts

    1    2    3    4    5    6

   87   84   78   76   92   83

expect  =      83.3333

chisq   =      2.05600

df      =      5.00000

pvalue  =     0.841343

Example 4

In the following example, 2001 deviates generated by the routine RANDOM are 
input to Dcube_Counts, and tabulated in 27 equally sized cubes. In the example, 
the null hypothesis is not rejected.

PRO print_results, n_run, num, dc, expect, chisq, df, p

   FOR j  =  0, n_run - 1 DO BEGIN

      PRINT, "       dcube_counts"

      PRINT, num + 1, Format = "(5X, 3I5)"

      FOR i  =  0, n_run - 1 DO $

         PRINT, num(i) + 1, dc(j, i, *), Format = "(I5, 3I5)"

      PRINT

   ENDFOR

   PRINT, "expect =", expect

   PRINT, "chisq  =", chisq

   PRINT, "df     =", df

   PRINT, "pvalue =", p

END
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nran  =  2001

n_run  =  3

num  =  INDGEN(n_run)

RANDOMOPT, set  =  123457

x  =  RANDOM(nran, /Uniform)

p  =  RANDOMNESS_TEST(x, n_run, Chisq = chisq, Df = df, $

                      Expect = expect, Dcube_Counts = dc)

print_results, n_run, num, dc, expect, chisq, df, p

       dcube_counts

         1    2    3

    1   26   27   24

    2   20   17   32

    3   30   18   21

       dcube_counts

         1    2    3

    1   20   16   26

    2   22   22   27

    3   30   24   26

       dcube_counts

         1    2    3

    1   28   30   22

    2   23   24   22

    3   33   30   27

expect =      24.7037

chisq  =      21.7631

df     =      26.0000

pvalue =     0.701585
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Introduction
The routines in this chapter assume the time series does not contain any missing 
observations. If missing values are present, they should be set to NaN (see the 
routine MACHINE), and the routine will return an appropriate error message. 
To enable fitting of the model, the missing values must be replaced by appropri-
ate estimates. 

General Methodology

A major component of the model identification step concerns determining if a 
given time series is stationary. The sample correlation functions computed by 
routines AUTOCORRELATION (page 391), and PARTIAL_AC (page 395) 
may be used to diagnose the presence of nonstationarity in the data, as well as 
to indicate the type of transformation1 require to induce stationarity. The fami-
ly of power transformations provided by routine BOXCOXTRANS (page 387) 
coupled with the ability to difference the transformed data using routine 
DIFFERENCE (page 382) affords a convenient method of transforming a wide 
class of nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also pro-
vide insight into the nature of the underlying model. Typically, this information 
is displayed in graphical form via time series plots, plots of the lagged data, and 
various correlation function plots. 

The observed time series may also be compared with time series generated from 
various theoretical models to help identify possible candidates for model fit-
ting. The routine RANDOM_ARMA may be used to generate a time series ac-
cording to a specified autoregressive moving average model. 

Time Domain Methodology

Once the data are transformed to stationarity, a tentative model in the time do-
main is often proposed and parameter estimation1, diagnostic checking and 
forecasting are performed.

ARIMA Model   (Autoregressive Integrated Moving Average) 

A small, yet comprehensive, class of stationary time-series models consists of 
the nonseasonal ARMA processes defined by

φ(B) (Wt − µ) = θ(B)At, t ∈ Z

where Z = {..., −2, −1, 0, 1, 2, ...} denotes the set of integers, B is the backward 
shift operator defined by BkWt = Wt−k, µ is the mean of Wt, and the following 
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equations are true:

φ(B) = 1 − φ1B − φ2B2 − ... − φpBp, p ≥ 0

θ(B) = 1 − θ1B − θ2B
2 − ... − θqBq, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

An equivalent version of the ARMA (p, q) model is given by

φ(B) Wt = θ0 + θ(B)At, t ∈ Z

where θ0 is an overall constant defined by the following:

See Box and Jenkins (1976, pp. 92−93) for a discussion of the meaning and 
usefulness of the overall constant.

If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing 
using DIFFERENCE (page 382) induces stationarity, and the model is called 
ARIMA (AutoRegressive Integrated Moving Average). Parameter estimation is 
performed on the stationary time series Wt, = ∇dZt , where ∇d = (1 − B)d is the 
backward difference operator with period 1 and order d, d > 0.

Typically, the method of moments includes keyword Moments in a call to func-
tion ARMA (page 366) for preliminary parameter estimates. These estimates 
can be used as initial values into the least-squares procedure by including key-
word Lsq  in a call to function ARMA. Other initial estimates provided by the 
user can be used. The least-squares procedure can be used to compute condi-
tional or unconditional least-squares estimates of the parameters, depending on 
the choice of the backcasting length. 

θ µ φ0
1

1= − ∑
�
��

�
��=

i
i
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ARMA Function 
Computes method-of-moments or least-squares estimates of parameters for a 
nonseasonal ARMA model.

Usage

result = ARMA(z, p, q)

Input Parameters

z — One-dimensional array containing the observations. 

p — Number of autoregressive parameters.

q — Number of moving average parameters.

Returned Value

result — An array of length 1 + p + q with the estimated constant, AR, and 
MA parameters. If No_Constant is specified, the 0-th element of this array is 
0.0.

Input Keywords

Double — If present and nonzero, double precision is used.

No_Constant — If present and nonzero, the time series is not centered about its 
mean. Keywords No_Constant and Constant cannot be used together. 

Constant — If present and nonzero, the time series is centered about its mean. 
Keywords No_Constant and Constant cannot be used together. 

Ar_Lags — One-dimensional array of length p containing the order of the non-
zero autoregressive parameters. The elements of Ar_Lags must be greater than 
or equal to 1.

Default: Ar_Lags = [1, 2, ..., p]

Ma_Lags — One-dimensional array of length q containing the order of the non-
zero moving average parameters. The elements of Ma_Lags must be greater 
than or equal to 1.

Default: Ma_Lags = [1, 2, ..., q]
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Moments — If present and nonzero, the autoregressive and moving average 
parameters are estimated by a method-of-moments procedure. Keywords 
Moments and Lsq cannot be used together. (Default)

Lsq — If present and nonzero, the autoregressive and moving average parame-
ters are estimated by a least-squares procedure. Keywords Moments and Lsq 
cannot be used together. 

Lgth_Backcast — Specifies the maximum length of backcasting. Must be 
greater than or equal to zero. Keywords Lgth_Backcast and Tol_Backcast must 
be used together.

Default: Lgth_Backcast = 10

Tol_Backcast — Specifies the tolerance level used to determine convergence of 
the backcast algorithm. Typically, Tol_Backcast is set to a fraction of an esti-
mate of the standard deviation of the time series. Keywords Lgth_Backcast and 
Tol_Backcast must be used together.

Default: Tol_Backcast = 0.01 x standard deviation of l

Tol_Convergence — Tolerance level used to determine convergence of the non-
linear least-squares algorithm. Keyword Tol_Convergence represents the 
minimum relative decrease in sum of squares between two iterations required to 
determine convergence. Hence, Tol_Convergence must be greater than or equal 
to zero.

Default: max {10–10, ε2 / 3} for single precision, 
max {10–20, ε2 / 3} for double precision, where ε is machine precision.

Err_Rel — Stopping criterion for use in the nonlinear equation solver used in 
both the method-of-moments and least-squares algorithms.

Default: Err_Rel = 100 x ε, where ε is machine precision

Itmax — Maximum number of iterations allowed in the nonlinear equation 
solver used in both the method-of-moments and least-squares algorithms.

Default: Itmax = 200

Mean_Est — Initial estimate of the mean of the time series z. 

Default: 

Init_Est_Ar — Array of length p containing preliminary estimates of the 
autoregressive parameters, internally. Keywords Init_Est_Ar and Init_Est_Ma 

Mean_Est zt /n
t 1=

n

∑=



368  Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

must be used together and are only applicable if Lsq is also present and 
nonzero.

Init_Est_Ma — Array of length q containing preliminary estimates of the mov-
ing average parameters. Keywords Init_Est_Ar and Init_Est_Ma must be used 
together and are only applicable if Lsq is also present and nonzero.

The following keywords are used to forecast up to N_Predict steps ahead and 
the information necessary to obtain confidence intervals:

N_Predict — Maximum lead time for forecasts. Keyword N_Predict must be 
greater than zero. Keywords Forecast and N_Predict must be used together.

Confidence — Value in the exclusive interval (0, 100) used to specify the confi-
dence level of the forecasts. Typical choices for Confidence are 90.0, 95.0, and 
99.0. 

Default: Confidence = 95.0

Backward_Origin — Maximum backward origin. Keyword Backward_Origin 
must be greater than or equal to zero and less than or equal to 
N_ELEMENTS(z) – (max(maxar, maxma)), where maxar = max(Ar_Lags) and 
maxma = max(Ma_Lags). 

Forecasts at origins N_ELEMENTS(z) – Backward_Origin through 
N_ELEMENTS(z) are generated. 

Default: Backward_Origin = 0

Output Keywords

Residual — Named variable into which an array of length 
N_ELEMENTS(z) – (max(Ar_Lags)) + Lgth_Backcast containing the residuals 
(including backcasts) at the final parameter estimate point in the first 
N_ELEMENTS(z) – (max(Ar_Lags)) + nb, where nb is the number of values 
backcast is stored.

Param_Est_Cov — Named variable into which an array, containing the covari-
ance matrix of the final parameter estimates, is stored. The array is of size np x 
np, where np = p + q + 1 if z is centered about its mean and np = p + q if z is 
not centered. The ordering of variables in Param_Est_Cov is Mean_Est, 
Ar_lags, and Ma_lags.

Autocov — Named variable into which an array of length p + q + 2 containing 
the variance and autocovariances of the time series z is stored. Keyword Auto-
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cov(0) contains the variance of the series z. Keyword Autocov(k) contains the 
autocovariance of lag k, where k = 1, ..., p + q + 1. 

Ss_Residual — Named variable into which the sum of squares of the random 
error is stored.

Forecast — Named variable into which an array of length N_Predict x 
(Backward_Origin + 3) containing the forecasts up to N_Predict steps ahead 
and the information necessary to obtain confidence intervals is stored. Key-
words Forecast and N_Predict must be used together.

Discussion

Function ARMA computes estimates of parameters for a nonseasonal ARMA 
model given a sample of observations, {Zt}, for t = 1, 2, ..., n, where 
n = N_ELEMENTS(z). The user may choose either method of moments or least 
squares. The default is method of moments.

The user chooses the method-of-moments algorithm with the keyword 
Moments. The least-squares algorithm is used if Lsq is specified. If the user 
wishes to use the least-squares algorithm, the preliminary estimates are the 
method-of-moments estimates by default; otherwise, the user can input initial 
estimates by specifying keywords Init_Est_Ar and Init_Est_Ma. The following 
table lists the appropriate keywords for both the method-of-moments and least-
squares algorithm:

Method of 
Moments

only
Least Squares only

Both Method of 
Moments and 
Least Squares

Moments Lsq Err_Rel

Constant (or No_Constant) Itmax
Ar_Lags Mean_Estimate

Ma_Lags Autocov
Lgth_Backcast Forecast

Tol_Backcast N_Predict
Tol_Convergence Confidence

Init_Est_Ar Backward_Origin
Init_Est_Ma

Residual
Param_Est_Cov

Ss_Residual
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Method-of-moments Estimation

Suppose the time series {Zt } is generated by an ARMA(p, q) model of the form

for 

Let  

be the estimate of the mean µ of the time series {Zt}, where

 

equals the following:

The autocovariance function is estimated by 

for k = 0, 1, ..., K, where K = p + q + 1. Note that

 

is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method-of-
moments estimates of the autoregressive parameters using the extended Yule-
Walker equations as follows: 

φ B( )Zt θ0 θ B( )At+=

t 0 1 2 ...,±,±,{ }∈

µ̂ Mean_Est=
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where

The overall constant θ0 is estimated by the following:

The moving average parameters are estimated based on a system of nonlinear 
equations given K = p + q + 1 autocovariances, σ(k) for k = 1, ..., K, and p 
autoregressive parameters φi for i = 1, ..., p.

Let Z′t = φ(B)Zt. The autocovariances of the derived moving average process 
Z′t = θ(B)At are estimated by the following relation:

The iterative procedure for determining the moving average parameters is based 
on the relation 

where σ(k) denotes the autocovariance function of the original Zt process.

Let τ = (τ0, τ1, ..., τq)T, f = (f0, f1, ..., fq)T, and

φ̂ φ̂1 … φ̂p, ,( )
T

=

Σ
ˆ

ij σ̂ q i j–+( ) i j, , 1 … p, ,= =

σ̂i σ̂ q i+( ),= i j, 1 … p, ,=

θ
ˆ

0

µ̂ for p = 0

µ̂ 1 φ̂i
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p
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for p 0>
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T be a (q + 1) x (q + 1)  matrix, where τj , fj , and T are as follows:

and 

Then, the value of τ at the (i + 1)-th iteration is determined by the following:

τ i + 1 = τ i – (T i)–1 f i 

The estimation procedure begins with the initial value 

and terminates at iteration i when either |f i| is less than Err_Rel or i equals 
Itmax. The moving average parameter estimates are obtained from the final esti-
mate of τ by setting

 

for j = 1, ..., q. The random error variance is estimated by the following:

τj
σA for j = 0

θj τ0⁄– for j = 1, ..., q






=

fj τiτi j+ σ̂′ j( )–
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See Box and Jenkins (1976, pp. 498–500) for a description of a function that 
performs similar computations.

Least-squares Estimation

Suppose the time series {Zt } is generated by a nonseasonal ARMA model of 
the form

φ (B) (Zt – µ) = θ (B) At  for  t ∈ { 0, ±1, ±2, ... } 

where B is the backward-shift operator, µ is the mean of Zt , and

with p autoregressive and q moving average parameters. Without loss of gener-
ality, the following is assumed:

so that the nonseasonal ARMA model is of order (p′, q′), where 

and . 

Note that the usual hierarchial model assumes the following:

Consider the sum-of-squares function

φ B( ) 1 φ1B
lφ 1( )

– φ2B
lφ 2( )

– ...– φpB
lφ p( )

–= for p 0≥

θ B( ) 1 θ1B
lθ 1( )

– θ2B
lθ 2( )

– ...– θqB
lθ q( )

–= for q 0≥

1 lφ 1( ) lφ 2( ) ... lφ p( )≤ ≤≤≤

1 lθ 1( ) lθ 2( ) ... lθ q( )≤ ≤≤≤

p ′ lφ p( )= q ′ lθ q( )=

lφ i )( i= , 1 i p≤ ≤

lθ j( ) j= , 1 j q≤ ≤

ST µ φ θ, ,( ) At[ ]2

n

∑=
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where 

and T = Lgth_Backcast is the length of backcasting from the beginning of the 
series. The random errors {At } are assumed to be independent and identical dis-
tributed N(0, σA

2) random variables. Hence, the log-likelihood function is given 
by

where f (µ, φ, θ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both 
Zt and At required to initialize the model. The method of selecting these initial 
values usually introduces transient bias into the model (Box and Jenkins 1976, 
pp. 210–211). For T = infinity, this dependency vanishes, and the estimation 
problem concerns maximization of the unconditional log-likelihood function. 
Box and Jenkins (1976, p. 213) argue that

 dominates . 

The parameter estimates that minimize the sum-of-squares function are called 
least-squares estimates. For large n, the unconditional least-squares estimates 
are approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T enables sufficient approximation of the uncondi-
tional sum-of-squares function. The values of [At] needed to compute the 
unconditional sum of squares are computed iteratively with initial values of Zt 
obtained by backcasting. The residuals (including backcasts), estimate of ran-
dom error variance, and covariance matrix of the final parameter estimates also 
are computed. ARIMA parameters can be computed using function DIFFER-
ENCE on page 382, together with ARMA.

Forecasting Option

The Box-Jenkins forecasts and their associated confidence intervals for a non-
seasonal ARMA model are computed given a sample of n = N_ELEMENTS(z) 
{Zt} for t = 1, 2, ..., n.

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of 
the form

At[ ] E At µ φ θ Z, , ,( )[ ]=

l µ φ θ σA, , ,( ) f µ φ θ, ,( ) n ln σA( )–
ST µ φ θ, ,( )

2σA
2

--------------------------–=

S∞ µ φ θ, ,( ) 2σA
2( )⁄ l µ φ θ σA

2, , ,( )
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φ (B) Zt = θ0 + θ (B) At 

for t ∈ { 0, ±1, ±2, ... }, 

where B is the backward-shift operator, θ0 is the constant, and

with p autoregressive and q moving average parameters. Without loss of gener-
ality, the following is assumed: 

so that the nonseasonal ARMA model is of order (p′, q′), where

 and . 

Note that the usual hierarchial model assumes the following:

The Box-Jenkins forecast at origin t for lead time l of Zt + l is defined in terms 
of the difference equation

φ B( ) 1 φ1B
lφ 1( )

– φ2Blφ 2( )– ...– φpBlφ p( )–=

θ B( ) 1 θ1B
lθ 1( )

– θ2Blθ 2( )– ...– θqBlθ q( )–=

1 lφ 1( ) lφ 2( ) ... lφ p( )≤ ≤≤≤

1 lθ 1( ) lθ 2( ) ... lθ q( )≤ ≤≤≤

p′ lθ p( )= q ′ lθ q( )=

lφ i )( i= , 1 i p≤ ≤

lθ j( ) j= , 1 j q≤ ≤

Z
ˆ

t l( ) θ0 φ1 Zt l lφ 1( )–+[ ] ... φp Zt l lφ p( )–+[ ] At l+[ ] ...–+ + + +=

θ1 At l lθ 1( )–+[ ] At l+[ ]– θ1 At l lθ 1( )–+[ ]– ...– θq At l lθ q( )–+[ ]–
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where the following is true:

The 100(1 – α)-percent confidence interval for Zt + l is given by

where  

is the 100 (1 – α / 2)-percentile of the standard normal distribution, σA is the 
standard deviation of the random error, and ψj is defined as follows:

In this equation, φi = 0 for i > p and θj = 0 for j > q. Note that the forecasts are 
computed for lead times l = 1, 2, ..., L at origins t = (n – b), (n – b + 1), ..., n, 
where 
L = N_Predict and b = Backward_Origin.

The Box-Jenkins forecasts minimize the mean-square error

. 

Also, the forecasts are easily updated according to the following equation: 

Zt k+[ ] Zt k+ for k = 0 1 2 ...,–,–,

Z
ˆ

t k( ) for k = 1, 2, ...





=

At k+[ ] Zt k+ Z
ˆ

t k 1–+ 1( ) for– k = 0 1 2 ...,–,–,
0 for k = 1, 2, ...






=

Z
ˆ

t l( ) z 1 α 2⁄–( ) ψj
2

j 0=

l 1–

∑
 
 
 
 
 1 2⁄

σA±

z 1 α 2⁄–( )

ψ j

1 for j 0=

φiψj i– θ j–
i 1=

j

∑ for j 0>









=

E Zt l+ Z
ˆ

t l( )–
2

Z
ˆ

t 1+ l( ) Z
ˆ

t l 1+( ) ψ lAt 1++=



ARMA Function  377

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set 
for this example consists of the number of sunspots observed from 1770 
through 1869 and is shown in Figure 8-1. The method-of-moments estimates

,  and  

for the ARMA(2,1) model are 

where Zt is “raw” data and the errors At are independently and identical nor-
mally distributed with mean zero and variance σ2

A.

temp = STATDATA(2)

; Get the Wolfer Sunspot Data.

z = TEMP(21:120, 1)

; Use only 100 observations, 1770-1869.

years = FINDGEN(100) + 1770

PLOT, years, z, XStyle = 1, Psym   = -6, $
Title  = ’Wolfer Sunspot Data’, XTitle = ’Year’, $
YTitle = ’Number of Sunspots’

; Plot the data.

p = 2

q = 1

parameters = ARMA(z, p, q)

; Perform time-series analysis.

PRINT, "AR estimates:", parameters(1), parameters(2)

AR estimates: 1.24426 -0.575149

PRINT, "MA estimate :", parameters(3)

MA estimate : -0.124094

θ̂0 φ̂1 φ̂2, θ̂1

Zt θ0 φ1Zt 1– φ2Zt 2– θ1At 1– At+–+ +=
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Figure 8-1  Plot of Wolfer Sunspot Data. 

Example 2

The data for this example are the same as that for the initial example. Prelimi-
nary method-of-moments estimates are computed by default, and the method of 
least squares is used to find the final estimates.

temp = STATDATA(2)

; Get the Wolfer Sunspot Data.

z = TEMP(21:120, 1)

; Use only 100 observations, 1770-1869.

parameters = ARMA(z, 2, 1, /Lsq, Tol_Convergence = .125) 

; Perform time-series analysis using method of moments. The
; warning error can be ignored in this case.

PRINT, "AR estimates:", parameters(1), $
parameters(2)

AR estimates: 1.39257 -0.732948

PRINT, "MA estimate :", parameters(3)

MA estimate : -0.137512
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Example 3

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set 
for this example consists of the number of sunspots observed from 1770 
through 1869. Function ARMA computes forecasts and 95-percent confidence 
limits for the forecasts for an ARMA(2, 1) model fit using function ARMA 
with the method-of-moments option. With Backward_Origin = 3, columns zero 
through three of Forecast provide forecasts given the data through 1866, 1867, 
1868, and 1869. Column five gives the deviations from the forecast for comput-
ing confidence limits, and column six gives the psi weights, which can be used 
to update forecasts when more data is available. For example, the forecast for 
the 102-nd observation (year 1871) given the data through the 100-th observa-
tion (year 1869) is 77.21; 95-percent confidence limits are given by

. 

After observation 101 (Z101 for year 1870) is available, the forecast can be 
updated by using 

 

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for obser-
vation 101 (Z101 – 83.72) to give the following:

77.21 + 1.37 x (Z101 – 83.72)

Since this updated forecast is one step ahead, the 95-percent confidence limits 
are now given by the forecast

.

First, define a procedure to output the results:

PRO print_results, parameters, forecast

PRINT, "Method-of-moments initial estimates:"

PRINT, "AR estimates:", parameters(1), parameters(2)

PRINT, "MA estimate :", parameters(3)

PRINT

lead_time = INDGEN(12) + 1

forecast = [[lead_time], [forecast]]

PRINT, "Forecasts from ..."

77.21 56.30+−

Z
ˆ

t 1+ l( ) Z
ˆ

t l+1( ) ψl Zt 1+ Z
ˆ

t 1( )–+=

33.22+−
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PRINT, "lead time", " 1866", " 1867", $
" 1868", " 1869", " Deviat.", " Psi"

PM, forecast, Format = "(i6, 3x, 6f9.4)"

END

temp = STATDATA(2)

; Get the Wolfer Sunspot Data.

z = TEMP(21:120, 1)

; Use only 100 observations, 1770-1869.

parameters = ARMA(z, 2, 1, Itmax = 0, Err_Rel = 0.0, $
Forecast = forecast, N_Predict = 12, $
Backward_Origin = 3)

; Perform time-series analysis using method-of-moments.

print_results, parameters, forecast

Method-of-moments initial estimates:

AR estimates:      1.24426    -0.575149

MA estimate :    -0.124094

Forecasts from ...

lead time  1866     1867     1868     1869     Deviat.   Psi

 1    18.2833  16.6151  55.1893  83.7196  33.2179  1.3684

  2     28.9182  32.0189  62.7606  77.2092  56.2980   1.1274

  3     41.0101  45.8275  61.8922  63.4608  67.6168   0.6158

  4     49.9387  54.1496  56.4571  50.0987  70.6432   0.1178

  5     54.0937  56.5623  50.1939  41.3803  70.7515  -0.2076

  6     54.1282  54.7780  45.5268  38.2174  71.0869  -0.3261

  7     51.7815  51.1701  43.3221  39.2965  71.9074  -0.2863

  8     48.8417  47.7072  43.2631  42.4582  72.5337  -0.1687

  9     46.5335  45.4736  44.4577  45.7715  72.7498  -0.0452

 10     45.3524  44.6861  45.9781  48.0758  72.7653   0.0407

 11     45.2103  44.9909  47.1827  49.0371  72.7779   0.0767

 12     45.7128  45.8230  47.8072  48.9080  72.8225   0.0720

years = INDGEN(100) + 1770

PLOT, years, z, $
Psym   = -6, Symsize = .5, $
XStyle = 1, $
XRange = [1770, 1885], $
YRange = [-50, 175], $
Title  = ’Wolfer Sunspot Data’, $
XTitle = ’Year’, $
YTitle = ’Number of Sunspots’

; Plot the data along with the forecasted values with confidence intervals.

OPLOT, INDGEN(10) + 1870, forecast(*, 3), $
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Psym   = 4, Symsize = .5

ERRPLOT, indgen(10) + 1870, $
forecast(*, 3) - forecast(*, 4), $
forecast(*, 3) + forecast(*, 4), $
Width  = .005

The plot of the forecasts and the confidence limits from year 1869 are shown in 
Figure 8-2.

Figure 8-2  Plot of sunspot data with predicted values and confidence 
bands.
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DIFFERENCE Function 
Differences a seasonal or nonseasonal time series.

Usage

result = DIFFRENCE(z, periods)

Input Parameters

z — One-dimensional array containing the time series.

periods — One-dimensional array containing the periods at which z is to be 
differenced.

Returned Value

result — One-dimensional array of length N_ELEMENTS (z) containing the 
differenced series.

Input Keywords

Double — If present and nonzero, double precision is used.

Orders — One-dimensional array of length N_ELEMENTS(periods) contain-
ing the order of each difference given in periods. The elements of Orders must 
be greater than or equal to 0.

Default: all the elements equal 1

Exclude_First or
First_To_Nan — If Exclude_First is present and nonzero, the first Num_Lost 
observations are excluded from the solution due to differencing. The differenced 
series is of length N_ELEMENTS(periods) – Num_Lost. If First_To_Nan is 
specified, the first Num_Lost observations are set to NaN (Not a Number). This 
is the default if neither Exclude_First nor First_To_Nan is specified.

Default: First_To_Nan

Output Keywords

Num_Lost — Named variable into which the number of observations “lost” 
because of differencing the time series z is stored.
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Discussion

Function DIFFERENCE performs m = N_ELEMENTS(periods) successive 
backward differences of period si = periods(i – 1)  and di = Orders(i – 1) 
for i = 1, ..., m on the n = N_ELEMENTS(x)  observations {Zt} for 
t = 1, 2, ..., n.

Consider the backward shift operator B given by

BkZt = Zt – k

for all k. Then, the backward difference operator with period s is defined by the 
following:

Note that BsZt and ∆sZt are defined only for t = (s + 1), ..., n. Repeated differ-
encing with period s is simply

where d ≥ 0 is the order of differencing. Note that ∆d
s Zt is defined only for 

t = (sd + 1), ..., n.

The general difference formula used in the function DIFFERENCE is given by

where nL represents the number of observations “lost” because of differencing 
and NaN represents the missing value code. See MACHINE to retrieve missing 
values. Note that

.

A homogeneous, stationary time series can be arrived at by appropriately differ-
encing a homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). 
Preliminary application of an appropriate transformation followed by differenc-
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ing of a series enables model identification and parameter estimation in the 
class of homogeneous stationary ARMA. 

Example 1

Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the 
monthly total number of international airline passengers from January 1949 
through December 1960. The entire data, after taking a natural logarithm, are 
shown in Figure 8-3. The plot shows a linear trend and a seasonal pattern with 
a period of 12 months. This suggests that the data needs a nonseasonal differ-
ence operator, ∆1, and a seasonal difference operator, ∆12, to make the series 
stationary. Function DIFFERENCE is used to compute 

Wt = ∆1∆12Zt = (Zt – Zt – 12) – (Zt – 1 – Zt – 13) 

for t = 14, 15, ..., 24.

ztemp = ALOG(STATDATA(4))

; Get the data set.

PLOT, INDGEN(144), ztemp, Psym = -6, Symsize = .5, $
YStyle = 1, Title  = ’Complete Airline Data’, $
XTitle = ’Month (beginning 1949)’, $
YTitle = ’!8ln!3(thousands of Passengers)’ 

; Plot the complete data set.

z = ztemp(0:23)

periods = [1, 12]

difference = DIFFERENCE(z, periods)

; Call DIFFERENCE.

matrix = [[INDGEN(24)], [z], [difference]]

; Create a matrix of the data to make the output easier.

PM, matrix, Format = ’(i4, x, 2f7.1)’, $
Title = "   I    z(i)   difference(i)"

; Output the results.

I    z(i)   difference(i)

 0   112.0    NaN

 1   118.0    NaN

 2   132.0    NaN

 3   129.0    NaN

 4   121.0    NaN

 5   135.0    NaN

 6   148.0    NaN

 7   148.0    NaN
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 8   136.0    NaN

 9   119.0    NaN

 10   104.0    NaN

 11   118.0    NaN

 12   115.0    NaN

 13   126.0    5.0

 14   141.0    1.0

 15   135.0   -3.0

 16   125.0   -2.0

 17   149.0   10.0

 18   170.0    8.0

 19   170.0    0.0

 20   158.0    0.0

 21   133.0   -8.0

 22   114.0   -4.0

 23   140.0   12.0

Figure 8-3  Plot of the complete data set for airline passengers.

Example 2

The data for this example is the same as that for the initial example. The first 
Num_Lost observations are excluded from W due to differencing, and Num_Lost 
also is output.
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ztemp = STATDATA(4)

; Get the data set.

z = ztemp(0:23)

periods = [1, 12]

diff = DIFFERENCE(z, periods, $
/Exclude_First, Num_Lost = num_lost)

; Call DIFFERENCE.

num_valid = N_ELEMENTS(z) - num_lost

; Use Num_Lost to compute the number of rows in the result
; that have valid values.

matrix = [[INDGEN(num_valid)], [z(0:num_valid-1)], $
[DIFF(0:num_valid-1)]]

; Put the data in one matrix to make printing easier.

PM, matrix, Format = ’(i4, x, 2f7.1)’, $

 Title = "   i    z(i)   DIFFERENCE(i)"

; Output the results.

i    z(i)   DIFFERENCE(i)

 0   112.0    5.0

 1   118.0    1.0

 2   132.0   -3.0

 3   129.0   -2.0

 4   121.0   10.0

 5   135.0    8.0

 6   148.0    0.0

 7   148.0    0.0

 8   136.0   -8.0

 9   119.0   -4.0

 10   104.0   12.0

Fatal Errors

STAT_PERIODS_LT_ZERO — Parameter periods (#) = #. All elements of 
Periods must be greater than zero.

STAT_ORDER_NEGATIVE — Parameter order (#) = #. All elements of order 
must be nonnegative.

STAT_Z_CONTAINS_NAN — Parameter z (#) = NaN; z cannot contain miss-
ing values. Other elements of z may be equal to NaN.
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BOXCOXTRANS Function 
Performs a forward or an inverse Box-Cox (power) transformation.

Usage

 result = BOXCOXTRANS(z, power)

Input Parameters

z — One-dimensional array containing the observations.

power — Exponent parameter in the Box-Cox (power) transformation.

Returned Value

result — One-dimensional array containing the transformed data.

Input Keywords

Double — If present and nonzero, double precision is used.

S — Shift parameter in the Box-Cox (power) transformation. Parameter shift 
must satisfy the relation min (z(i)) + S > 0.

Default: S = 0.0.

Inverse — If present and nonzero, the inverse transform is performed.

Discussion

Function BOXCOXTRANS performs a forward or an inverse Box-Cox (pow-
er) transformation of n = N_ELEMENTS(z) observations {Zt} for t = 0, 1, ..., n-
1.

The forward transformation is useful in the analysis of linear models or models 
with nonnormal errors or nonconstant variance (Draper and Smith 1981, p. 
222). In the time series setting, application of the appropriate transformation 
and subsequent differencing of a series can enable model identification and pa-
rameter estimation in the class of homogeneous stationary autoregressive-mov-
ing average models. The inverse transformation can later be applied to certain 
results of the analysis, such as forecasts and prediction limits of forecasts, in or-
der to express the results in the scale of the original data. A brief note concern-
ing the choice of transformations in the time series models is given in Box and 
Jenkins (1976, p. 328).
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The class of power transformations discussed by Box and Cox (1964) is defined 
by

where Zt + ξ > 0 for all t. Since

the family of power transformations is continuous.

Let λ = power and ξ = S; then, the computational formula used by BOXCOX-
TRANS is given by

where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only 
in the scale and origin of the transformed data. Consequently, the general analy-
sis of the data is unaffected (Draper and Smith 1981, p. 225).

The inverse transformation is computed by

where {Zt} now represents the result computed by BOXCOXTRANS for a for-
ward transformation of the original data using parameters λ and ξ.
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Example 1

The following example performs a Box-Cox transformation with power = 2.0 
on 10 data points.

power  =  2.0

z  =  [1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0]

; Transform Data using Box Cox Transform

x  =  BOXCOXTRANS(z, power)

PM, x, Title = "Transformed Data"

Transformed Data

      1.00000

      4.00000

      9.00000

      16.0000

      25.0000

      30.2500

      42.2500

      56.2500

      64.0000

      100.000

Example 2

This example extends the first example—an inverse transformation is applied to 
the transformed data to return to the orignal data values.

power  =  2.0

z  =  [1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0]

; Transform Data using Box Cox Transform

x  =  BOXCOXTRANS(z, power)

PM,  x, Title = "Transformed Data"

Transformed Data

      1.00000

      4.00000

      9.00000

      16.0000

      25.0000

      30.2500

      42.2500

      56.2500

      64.0000
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      100.000

; Perform an Inverse Transform on the Transformed Data

y  =  BOXCOXTRANS(x, power, /inverse)

PM, y, Title = "Inverse Transformed Data"

Inverse Transformed Data

      1.00000

      2.00000

      3.00000

      4.00000

      5.00000

      5.50000

      6.50000

      7.50000

      8.00000

      10.0000

Fatal Errors

STAT_ILLEGAL_SHIFT — S = # and the smallest element of z is z(#) = #. S 
plus z(#) = #. S + z(I) must be greater than 0 for i = 1, ..., N_ELEMENTS(z). 
N_ELEMENTS(z) = #.

STAT_BCTR_CONTAINS_NAN — One or more elements of z is equal to NaN 
(Not a number). No missing values are allowed. The smallest index of an ele-
ment of z that is equal to NaN is #.

STAT_BCTR_F_UNDERFLOW — Forward transform. power = #. S = #. The 
minimum element of z is z(#) = #. (z(#)+ S) ^ power will underflow.

STAT_BCTR_F_OVERFLOW — Forward transformation. power = #. S = #. The 
maximum element of z is z(#) = #. (z(#) + S) ^ power will overflow.

STAT_BCTR_I_UNDERFLOW — Inverse transformation. power = #. The mini-
mum element of z is z(#) = #. exp(z(#)) will underflow.

STAT_BCTR_I_OVERFLOW — Inverse transformation. power = #. The maxi-
mum element of z(#) = #. exp(z(#)) will overflow.

STAT_BCTR_I_ABS_UNDERFLOW — Inverse transformation. power = #. The 
element of z with the smallest absolute value is z(#) = #. z(#) ^ (1/ power) will 
underflow.

STAT_BCTR_I_ABS_OVERFLOW — Inverse transformation. power = #. The 
element of z with the largest absolute value is z(#) = #. z(#) ^ (1/ power) will 
overflow.
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AUTOCORRELATION Function 
Computes the sample autocorrelation function of a stationary time series.

Usage

result = AUTOCORRELATION(x, lagmax)

Input Parameters

x — One-dimensional array containing the time series.  N_ELEMENTS(x) must 
be greater than or equal to 2.

lagmax — Scalar integer containing the maximum lag of autocovariance, auto-
correlations, and standard errors of autocorrelations to be computed.  lagmax 
must be greater than or equal to 1 and less than N_ELEMENTS(x).

Returned Value

result — One-dimensional array of length lagmax + 1 containing the autocorre-
lations of the time series x.  The 0-th element of this array is 1.  The k-th ele-
ment of this array contains the autocorrelation of lag k where k = 1, ..., lagmax.

Input Keywords

Double — If present and nonzero, double precision is used.

Xmean_In — The estimate of the mean of the time series x.

Se_Option — Method of computation for standard errors of the autocorrela-
tions. Keywords Se_Option and Seac must be used together.

Output Keywords

Acv — Named variable into which an array of length lagmax + 1 containing the 
variance and autocovariances of the time series x is stored.  The 0-th element of 
this array is the variance of the time series x.  The k-th element contains the au-

Se_Option Action

1 Compute the standard errrors of autocorrela-
tion using Barlett’s formula.

2 Compute the standard errrors of autocorrela-
tion using Moran’s formula.
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tocovariance of lag k where k = 1, ..., lagmax.

Seac — Named variable into which an array of length lagmax containing the 
standard errors of the autocorrelations of the time series x is stored. Keywords 
Seac and Se_Option must be used together. 

Xmean_Out — Named vaariable into which the estimate of the mean of the 
time  series x is stored.

Discussion

Function AUTOCORRELATION estimates the autocorrelation function of a 
stationary time series given a sample of  n  = N_ELEMENTS(x) observations 
{Xt} for t = 1, 2, …, n.

Let 

be the estimate of the mean µ of the time series {Xt} where

The autocovariance function σ(k) is estimated by

where K = lagmax.  Note that 

is an estimate of the sample variance. The autocorrelation function ρ(k) is esti-
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mated by

Note that 

by definition.

The standard errors of the sample autocorrelations may be optionally computed 
according to the keyword Se_Option for the output keyword Seac. One method 
(Bartlett 1946) is based on a general asymptotic expression for the variance of 
the sample autocorrelation coefficient of a stationary time series with indepen-
dent, identically distributed normal errors. The theoretical formula is

where 

assumes µ is unknown. For computational purposes, the autocorrelations r(k) 
are replaced by their estimates 

for |k| ≤ K, and the limits of summation are bounded because of the assumption 
that r(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the 
sample autocorrelation coefficient of a random process with independent, identi-
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cally distributed normal errors. The theoretical formula is

where µ is assumed to be equal to zero. Note that this formula does not depend 
on the autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set 
for this example consists of the number of sunspots observed from 1770 
through 1869. Function AUTOCORRELATION computes the estimated autoco-
variances, estimated autocorrelations, and estimated standard errors of the auto-
correlations.

PRO print_results, xm, acv, result, seac

PRINT, "Mean =", xm

PRINT, "Variance =", acv(0)

PRINT, "      Lag       ACV          AC         SEAC"

PRINT, "       0", acv(0), result(0)

FOR j  =  1, 20 DO $

   PRINT, j, acv(j), result(j), seac(j - 1)

END

lagmax = 20

data = STATDATA(2)

x = data(21:120,1)

result = AUTOCORRELATION(x, lagmax, Acv = acv, Se_Option = 1, $

                            Seac = seac, Xmean_Out = xm)

print_results, xm, acv, result, seac

Mean =      46.9760

Variance =      1382.91

      Lag       ACV          AC         SEAC

       0      1382.91      1.00000

       1      1115.03     0.806293    0.0347834

var k
n k

n n
$ρ� �� � � �= −

+ 2
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       2      592.004     0.428087    0.0962420

       3      95.2974    0.0689109     0.156783

       4     -235.952    -0.170620     0.205767

       5     -370.011    -0.267560     0.230956

       6     -294.255    -0.212780     0.228995

       7     -60.4423   -0.0437067     0.208622

       8      227.633     0.164604     0.178476

       9      458.381     0.331462     0.145727

      10      567.841     0.410613     0.134406

      11      546.122     0.394908     0.150676

      12      398.937     0.288477     0.174348

      13      197.757     0.143001     0.190619

      14      26.8911    0.0194453     0.195490

      15     -77.2807   -0.0558828     0.195893

      16     -143.733    -0.103935     0.196285

      17     -202.048    -0.146104     0.196021

      18     -245.372    -0.177432     0.198716

      19     -230.816    -0.166906     0.205359

      20     -142.879    -0.103318     0.209387

PARTIAL_AC Function 
Computes the sample partial autocorrelation function of a stationary time series.

Usage

result = PARTIAL_AC(cf)

Input Parameters

cf — One-dimensional array containing the autocorrelations of the time series x.

Returned Value

result — One-dimensional array containing the partial autocorrelations of the 
time series x.

Input Keywords

Double — If present and nonzero, double precision is used.
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Discussion

Function PARTIAL_AC estimates the partial autocorrelations of a stationary 
time series given the K = (N_ELEMENTS(cf) – 1) sample autocorrelations 

for k = 0, 1, …, K. Consider the AR(k) process defined by

where φkj denotes the j-th coefficient in the process. The set of estimates 

for k = 1, …, K is the sample partial autocorrelation function. The autoregres-
sive parameters

for j = 1, …, k are approximated by Yule-Walker estimates for successive 
AR(k) models where k = 1, …, K. Based on the sample Yule-Walker equations

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The 
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equations are given by 

and 

This procedure is sensitive to rounding error and should not be used if the pa-
rameters are near the nonstationarity boundary. A possible alternative would be 
to estimate {φkk} for successive AR(k) models using least or maximum likeli-
hood. Based on the hypothesis that the true process is AR(p), Box and Jenkins 
(1976, page 65) note 

See Box and Jenkins (1976, pages 82–84) for more information concerning the 
partial autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set 
for this example consists of the number of sunspots observed from 1770 
through 1869. Routine PARTIAL_AC is used to compute the estimated partial 
autocorrelations.

data  =  STATDATA(2)

x  =  data(21:120,1)

result  =  AUTOCORRELATION(x, 20)

partial  =  PARTIAL_AC(result)

$

$( )
$( ) $

$( )

$
$( )

, ,
,

,

φ

ρ
ρ φ ρ

φ ρ
kk j

k
k j

j
k

k

k

k k

j
k K

=

=
− ∑ −

− ∑
=

�
�	


	
=
−

−

=
−

−

1 1

1
2

1
1

1

1
1

1

j

j

K

$

$ $ $ , , ,
$

, ,φ
φ φ φ
φkj

k kk k k j

kk

j k

j k
=

− = −
=

��	
	
− − −1 1 1 2 1j K

var{
n

k pkk
$ } ~φ − ≥ +1

1



398  Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

PRINT, "LAG      PACF"

FOR i  =  0, 19 DO $

   PM, i + 1, partial(i), Format = "(I2, F11.3)"

LAG      PACF

 1      0.806

 2     -0.635

 3      0.078

 4     -0.059

 5     -0.001

 6      0.172

 7      0.109

 8      0.110

 9      0.079

10      0.079

11      0.069

12     -0.038

13      0.081

14      0.033

15     -0.035

16     -0.131

17     -0.155

18     -0.119

19     -0.016

20     -0.004

LACK_OF_FIT Function 
Performs lack-of-fit test for a univariate time series or transfer function given 
the appropriate correlation function.

Usage

result = LACK_OF_FIT(nobs, cf, npfree)
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Input Parameters

nobs — Number of observations of the stationary time series.  

cf — One-dimensional array containing the correlation function.

npfree — Number of free parameters in the formulation of the time series mod-
el.  npfree must be greater than or equal to zero and less than lagmax where 
lagmax = (N_ELEMENTS(cf) – 1).   Woodfield (1990) recommends 
npfree = p + q.

Returned Value

result — One-dimensional array of length 2 with the test statistic, Q, and its 
p-value, p.  Under the null hypothesis, Q has an approximate chi-squared distri-
bution with lagmax - Lagmin + 1 – npfree degrees of freedom.

Input Keywords

Double — If present and nonzero, double precision is used.

Lagmin — Minimum lag of the correlation function.  Lagmin corresponds to 
the lower bound of summation in the lack of fit test statistic.  

Default: Lagmin = 1.

Discussion

Routine LACK_OF_FIT may be used to diagnose lack of fit in both ARMA 
and transfer function models. Typical arguments for these situations are 

Function LACK_OF_FIT performs a portmanteau lack of fit test for a time se-
ries or transfer function containing n observations given the appropriate sample 

Model LAGMIN LAGMAX NPFREE

ARMA (p, q) 1 p + q

Transfer function 0 r + s

NOBS

NOBS
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correlation function

for k = L, L + 1, …, K where L = Lagmin and K = lagmax. 

The basic form of the test statistic Q is

with L = 1 if 

is an autocorrelation function. Given that the model is adequate, Q has a chi-
squared distribution with K − L + 1 − m degrees of freedom where m = npfree 
is the number of parameters estimated in the model. If the mean of the time se-
ries is estimated, Woodfield (1990) recommends not including this in the count 
of the parameters estimated in the model. Thus, for an ARMA(p, q) model set 
npfree = p + q regardless of whether the mean is estimated or not. The original 
derivation for time series models is due to Box and Pierce (1970) with the 
above modified version discussed by Ljung and Box (1978). The extension of 
the test to transfer function models is discussed by Box and Jenkins (1976, pag-
es 394–395).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set 
for this example consists of the number of sunspots observed from 1770 
through 1869. An ARMA(2,1) with nonzero mean is fitted using routine ARMA 
(page 366). The autocorrelations of the residuals are estimated using routine 
AUTOCORRELATION (page 391). A portmanteau lack of fit test is computed 
using 10 lags with LACK_OF_FIT. 

The warning message from ARMA in the output can be ignored.  (See the ex-
ample for routine ARMA for a full explanation of the warning message.)
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p  =  2

q  =  1

tc  =  0.125

lagmax  =  10

npfree  =  4

; Get sunspot data for 1770 through 1869, store it in x()

data  =  STATDATA(2)

x  =  data(21:120,1)

; Get residuals for ARMA(2, 1) for autocorrelation/lack of fit

params = ARMA(x, p, q, /Lsq, Tol_Convergence = tc, Residual = r)

% ARMA: Warning: STAT_LEAST_SQUARES_FAILED

Least squares estimation of the parameters has failed to con-
verge. Increase "LGTH_BACKCAST" and/or "TOL_BACKCAST" and/or 
"TOL_CONVERGENCE". The estimates of the parameters at the last 
iteration may be used as new starting values.

; Get autocorrelations from residuals for lack of fit test

; NOTE:   number of observations is equal to number of residuals

corrs  =  AUTOCORRELATION(r, lagmax)

; Get lack of fit test statistic and p-value

; NOTE:   number of observations is equal to original number of data

result  =  LACK_OF_FIT(N_ELEMENTS(x), corrs, npfree)

; Print parameter estimates, test statistic, and p_value

; NOTE:   Test Statistic Q follows a Chi-squated dist.

PRINT, "Lack of Fit Statistic (Q) =", result(0), $
Format = "(A28, F8.3)"

Lack of Fit Statistic (Q) =  14.572

PRINT, "P-value (PVALUE) =", result(1), Format = "(A28, F8.4)"

          P-value (PVALUE) =  0.9761

GARCH Function 
Compute estimates of the parameters of a GARCH(p,q) model.

Usage

result = GARCH(p, q, y, xguess)
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Input Parameters

p — Number of autoregressive (AR) parameters

q — Number of moving average (MA) parameters

y — One-dimensional array containing the observed time series data.

xguess — One-dimensional array of length p + q + 1 containing the initial val-
ues for the parameter array x.

Returned Value

result — One-dimensional array of length p + q + 1 containing the estimated 
values of sigma squared, the AR parameters, and the MA parameters.

Input Keywords

Double — If present and nonzero, double precision is used.

Max_Sigma — Value of the upperbound on the first element (sigma) of the ar-
ray of returned estimated coefficients.  

Default: Max_Sigma = 10.

Output Keywords

Log_Likelihood — Named variable into which the value of Log-likelihood 
function evaluated at the estimated parameter array x is stored.

Aic — Named variable into which the value of Akaike Information Criterion 
evaluated at the estimated parameter array x is stored.

Var —  Named variable into which an array of size (p + q + 1) by (p + q + 1) 
containing the variance-covariance matrix is stored.

Discussion

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model 
is defined as
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where zt’s are independent and identically distributed standard normal random 
variables, 

The above model is denoted as GARCH(p,q).  The p is the autoregressive lag 
and the q is the moving average lag.  When βi = 0, i = 1,2,…,p, the above mod-
el reduces to ARCH(q) which was proposed by Engle (1982). The nonnegativity 
conditions on the parameters implied a nonnegative variance and the condition 
on the sum of the βi’s and α i’s is required for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) mod-
els have often found to appropriately account for conditional heteroskedasticity 
(Palm 1996).  This finding is similar to linear time series analysis based on 
ARMA models. 

It is important to notice that for the above models positive and negative past 
values have a symmetric impact on the conditional variance. In practice, many 
series may have strong asymmetric influence on the conditional variance.  To 
take into account this phenomena, Nelson (1991) put forward Exponential 
GARCH (EGARCH). Lai (1998) proposed and studied some properties of a 
general class of models that extended linear relationship of the conditional vari-
ance in ARCH and GARCH into nonlinear fashion.    

The maximal likelihood method is used in estimating the parameters in 
GARCH(p,q). The log-likelihood of the model for the observed series {Yt} with 
length m is

In the model, if q = 0, the model GARCH is singular such that the estimated 
Hessian matrix H is singular.

The initial values of the parameter array x entered in array xguess must satisfy 
certain constraints.  The first element of xguess refers to sigma and must be 
greater than zero and less than Max_Sigma.  The remaining p + q initial values 
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must each be greater than or equal to zero but less than one.

To guarantee stationarity in model fitting, 

is checked internally. The initial values should be selected from the values be-
tween zero and one. The Aic is computed by 

      2 * log (L) + 2 * (p+q+1),

where log(L) is the value of the log-likelihood function at the estimated parame-
ters.

In fitting the optimal model, the subroutine MINCONGEN as well as its associ-
ated subroutines are modified to find the maximal likelihood estimates of the 
parameters in the model. Statistical inferences can be performed outside the rou-
tine GARCH based on the output of the log-likelihood function 
(Log_Liklihood), the Akaike Information Criterion (Aic), and the variance-cova-
riance matrix (Var).

Example

The data for this example are generated to follow a GARCH(p,q) process by us-
ing a random number generation function SGARCH.  The data set is analyzed 
and estimates of sigma, the AR parameters, and the MA parameters are re-
turned.  The values of the Log-likelihood function and the Akaike Information 
Criterion are returned from the output keywords Log_Likelihood and Aic re-
spectively.

FUNCTION SGARCH, p, q, m, x

   z  =  FLTARR(m + 1000)

   y0  =  FLTARR(m + 1000)

   sigma  =  FLTARR(m + 1000)

   z  =  RANDOM(m + 1000, /Normal)

   l  =  ((p  >  q)  >  1)

   y0(0:l - 1)  =  z(0:l - 1)*x(0)

; Compute the Initial Value Of Sigma

   s3  =  0.0

   IF ((p  >  q) GE 1) THEN s3  =  TOTAL(x(1:p + q))

x i
p q

( ) ,
i=

+
∑ <

1
1
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   sigma(0:l - 1)  =  x(0)/(1.0 - s3)

   FOR i  =  l,  (m + 1000 - 1) DO BEGIN

      s1  =  0.0

      s2  =  0.0

      IF (q GE 1) THEN BEGIN

         FOR j  =  0,  q - 1  DO s1  =  s1 + x(j + 1) * $

                   (y0(i - j - 1)^2)

      END

      IF (p GE 1) THEN BEGIN

         FOR j  =  0,  p - 1  DO s2  =  s2 + x(q + 1 + j) $

                  * sigma(i - j - 1)

      END

      sigma(i)  =  x(0) + s1 + s2

      y0(i)  =  z(i)*SQRT(sigma(i))

   END

  ; Discard the first 1000 Simulated Observations

   RETURN,   y0(1000:*)

; End of function

END

RANDOMOPT, Set  =  182198625

p  =  2

q  =  1

m  =  1000

x  =  [1.3, 0.2, 0.3, 0.4]

xguess  =  [1.0, 0.1, 0.2, 0.3]

y  =  SGARCH(p, q, m, x)

result  =  GARCH(p, q, y, xguess, Log_Likelihood = a, Aic = aic)

PRINT, "Sigma estimate is", result(0)

Sigma estimate is      1.27742

PRINT, "AR(1) estimate is", result(1)

AR(1) estimate is     0.230132

PRINT, "AR(2) estimate is", result(2)

AR(2) estimate is     0.375924
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PRINT, "MA(1) estimate is", result(3)

MA(1) estimate is     0.312843

PRINT, "Log-likelihood function value is", a

Log-likelihood function value is     -2707.53

PRINT, "Akaike Information Criterion value is", aic

Akaike Information Criterion value is      5423.06

KALMAN Procedure
Performs Kalman filtering and evaluates the likelihood function for the state-
space model.

Usage

KALMAN, b, covb, n, ss, alndet

Input/Output Parameters

b  One dimensional array of containing the estimated state vector. The input 
is the estimated state vector at time k given the observations through time 
k − 1. The output is the estimated state vector at time k + 1 given the observa-
tions through time k. On the first call to KALMAN, the input b must be the 
prior mean of the state vector at time.

covb  Two dimensional array of size N_ELEMENTS(b)  by 
N_ELEMENTS(b) such that covb* σ2 is the mean squared error matrix for b.
Before the first call to KALMAN, covb* σ2 must equal the variance-covariance 
matrix of the state vector.

n  Named variable containing the rank of the variance-covariance matrix for 
all the observations. n must be initialized to zero before the first call to 
KALMAN. In the usual case when the variance-covariance matrix is nonsingu-
lar, n equals the sum of the N_ELEMENTS(Y) from the invocations to 
KALMAN. See the keyword section below for the definition of Y.
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ss  Named variable containing the generalized sum of squares.
ss must be initialized to zero before the first call to KALMAN. The estimate of 
σ2 is given by

alnet  Named variable containing the natural log of the product of the nonzero 
eigenvalues of P where P * σ2 is the variance-covariance matrix of the observa-
tions. Although alndet is computed, KALMAN avoids the explicit computation 
of P. alndet must be initialized to zero before the first call to  KALMAN. In the 
usual case when P is nonsingular, alndet is the natural log of the determinant of 
P.

Input Keywords

Y  One dimensional array containing the observations.  Keywords Y, Z and R 
indicate an update step and must be used together

R  Two dimensional array if size  N_ELEMENTS(Y) by N_ELEMENTS(Y) 
containing the matrix such that R * σ2 is the variance-covariance matrix of 
errors in the observation equation. Keywords Y, Z and R indicate an update step 
and must be used together.

T_matrix  Two dimensional array if size  N_ELEMENTS(b) by 
N_ELEMENTS(b)  containing the transition matrix in the state equation. 

Default: T_matrix = identity matrix

Q_matrix  Two dimensional array if size  N_ELEMENTS(b) by 
N_ELEMENTS(b)  matrix such that Q_matrix * σ2 is the variance-covariance 
matrix of the error vector in the state equation.

Default: There is no error term in the state equation

Tolerance  Tolerance used in determining linear dependence. 

Default: Tolerance = 100*eps  where eps is machine precision.

Output Keywords

V  One dimensional array of length N_ELEMENTS(Y) containing the one-
step-ahead prediction error.

.
ss

n
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Covv  Two dimensional array if size  N_ELEMENTS(Y) by 
N_ELEMENTS(Y) containing a matrix such that Covv * σ2 is the variance-
covariance matrix of v.

Discussion

Routine KALMAN is based on a recursive algorithm given by Kalman (1960), 
which has come to be known as the Kalman filter. The underlying model is 
known as the state-space model. The model is specified stage by stage where 
the stages generally correspond to time points at which the observations become 
available. The routine KALMAN avoids many of the computations and storage 
requirements that would be necessary if one were to process all the data at the 
end of each stage in order to estimate the state vector. This is accomplished by 
using previous computations and retaining in storage only those items essential 
for processing of future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input 
in keyword Y ) be the nk × 1 vector of observations that become available at 
time k. The subscript k is used here rather than t, which is more customary in 
time series, to emphasize that the model is expressed in stages k = 1, 2, … and 
that these stages need not correspond to equally spaced time points. In fact, they 
need not correspond to time points of any kind. The observation equation for 
the state-space model is

yk = Zkbk + ek k = 1, 2, …

Here, Zk is an nk × q known matrix and bk is the q × 1 state vector. The state 
vector bk is allowed to change with time in accordance with the state equation

bk+1 = Tk+1 bk + wk+1 k = 1, 2, …

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the 
transition matrix Tk+1 (the identity matrix by default, or optionally input using 
keyword T_MATRIX), which is assumed known. It is assumed that the q-dimen-
sional wks (k = 1, 2, ... K) are independently distributed multivariate normal 
with mean vector 0 and variance-covariance matrix σ2Qk, that the nk-dimen-
sional eks (k = 1, 2, ... K) are independently distributed multivariate normal 
with mean vector 0 and variance-covariance matrix σ2 Rk, and that the wks and 
eks are independent of each other. Here, µ1is the mean of b1 and is assumed 
known, σ2 is an unknown positive scalar. Qk+1 (input in Q) and Rk (input in 
keyword R) are assumed known.
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Denote the estimator of the realization of the state vector bk given the observa-
tions y1, y2, …, yj by 

By definition, the mean squared error matrix for 

is

At the time of the k-th invocation, we have

and 

Ck|k-1, which were computed from the (k−1)-st invocation, input in b and covb, 
respectively. During the k-th invocation, routine KALMAN computes the fil-
tered estimate

along with Ck|k. These quantities are given by the update equations:

where
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and where 

Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the 
variance-covariance matrix for vk. Hk is stored in covv. The “start-up values” 
needed on the first invocation of KALMAN are

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th 
invocation are completed by KALMAN computing the one-step-ahead estimate 

along with Ck+1|k given by the prediction equations:

If both the filtered estimates and one-step-ahead estimates are needed by the 
user at each time point, KALMAN can be invoked twice for each time point—
first without T_matrix and Q_matrix to produce

and Ck|k, and second without keywords Y, Z, and R to produce

and Ck+1|k (Without T_matrix and Q_matrix, the prediction equations are 
skipped. Without keywords Y, Z, and R, the update equations are skipped.).
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Often, one desires the estimate of the state vector more than one-step-ahead, 
i.e., an estimate of

is needed where k > j + 1. At time j, KALMAN is invoked with keywords Y, Z, 
and R  to compute

Subsequent invocations of KALMAN without keywords Y, Z, and R can 
compute

Computations for

and Ck|j assume the variance-covariance matrices of the errors in the observa-
tion equation and state equation are known up to an unknown positive scalar 
multiplier, σ2. The maximum likelihood estimate of σ2 based on the observa-
tions y1, y2, …, ym, is given by

where

N and SS are the input/output arguments n and ss.

If σ2 is known, the Rks and Qks can be input as the variance-covariance matri-
ces exactly. The earlier discussion is then simplified by letting σ2 = 1. 

In practice, the matrices Tk, Qk, and Rk are generally not completely known. 
They may be known functions of an unknown parameter vector θ. In this case, 
KALMAN can be used in conjunction with an optimization program (see rou-
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tine FMINV, PV-WAVE: IMSL Mathematics Reference, Chapter 8,  
“Optimization”) to obtain a maximum likelihood estimate of θ. The natural log-
arithm of the likelihood function for y1, y2, …, ym differs by no more than an 
additive constant from

(Harvey 1981, page 14, equation 2.21). 

Here,

(stored in alndet) is the natural logarithm of the determinant of V where σ2V is 
the variance-covariance matrix of the observations. 

Minimization of −2L(θ, σ2; y1, y2, …, ym) over all θ and σ2 produces maximum 
likelihood estimates. Equivalently, minimization of −2Lc(θ; y1, y2, …, ym) where

produces maximum likelihood estimates 

The minimization of −2Lc(θ; y1, y2, …, ym) instead of −2L(θ, σ2; y1, y2, …, ym), 
reduces the dimension of the minimization problem by one. The two optimiza-
tion problems are equivalent since 
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minimizes −2L(θ, σ2; y1, y2, …, ym) for all θ, consequently, 

can be substituted for σ2 in L(θ, σ2; y1, y2, …, ym) to give a function that dif-
fers by no more than an additive constant from Lc(θ; y1, y2, …, ym). 

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modifi-
cation for singular distributions described by Rao (1973, pages 527–528) is 
used. The necessary changes in the preceding discussion are as follows:

1. Replace

by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk. 

3. Replace N by 

Maximum likelihood estimation of parameters in the Kalman filter is discussed 
by Sallas and Harville (1988) and Harvey (1981, pages 111–113).

Example 1

Routine KALMAN is used to compute the filtered estimates and one-step-ahead 
estimates for a scalar problem discussed by Harvey (1981, pages 
116–117). The observation equation and state equation are given by

where the eks are identically and independently distributed normal with mean 0 
and variance σ2, the wks are identically and independently distributed normal 
with mean 0 and variance 4σ2, and b1 is distributed normal with mean 4 and 
variance 16σ2. Two invocations of KALMAN are needed for each time point in 
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order to compute the filtered estimate and the one-step-ahead estimate. The first 
invocation does not use the keywords T_matrix and Q_matrix so that the predic-
tion equations are skipped in the computations. The update equations are 
skipped in the computations in the second invocation.

This example also computes the one-step-ahead prediction errors. Harvey (1981, 
page 117) contains a misprint for the value v4 that he gives as 1.197. The cor-
rect value of v4 = 1.003 is computed by KALMAN.

Note that this example is in the form of a WAVE procedure, with the output fol-
lowing the procedure.

PRO EX_KALMAN

z = 1

r = 1

q = 4

t = 1

b = 4

covb = 16

ydata = [4.4, 4, 3.5, 4.6]

n = 0

ss = 0

alndet = 0

format = "(2I4, 2F8.3, I4, 4F8.3)"

PRINT, "   k   j     b      covb   n    ss     alndet    v      
covv"

FOR i = 0, 3 DO BEGIN

   y = ydata(i)

   ; Update

   kalman, b, covb, n, ss, alndet, $

     Y = y, Z = Z, R = r, $

     v = v, covv = covv

   PRINT, i, i, b, covb, n, ss, alndet, v, covv, format = 
format
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   ; Predict

   kalman, b, covb, n, ss, alndet, $

     t_matrix = t, q = q

   PRINT, i+1, i, b, covb, n, ss, alndet, v, covv, format = 
format

END

END

Output

k   j     b      covb n    ss alndet    v covv

0   0   4.376   0.941   1   0.009   2.833   0.400  17.000

1   0   4.376   4.941   1   0.009   2.833   0.400  17.000

1   1   4.063   0.832   2   0.033   4.615  -0.376   5.941

2   1   4.063   4.832   2   0.033   4.615  -0.376   5.941

2   2   3.597   0.829   3   0.088   6.378  -0.563   5.832

3   2   3.597   4.829   3   0.088   6.378  -0.563   5.832

3   3   4.428   0.828   4   0.260   8.141   1.003   5.829

4   3   4.428   4.828   4   0.260   8.141   1.003   5.829
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CHAPTER

9

Multivariate Analysis

Contents of Chapter
Performs a K-means (centroid) 
cluster analysis ................................. K_MEANS Function

Computes principal components
....................................................PRINC_COMP Function

Extracts factor-loading 
estimates .........................  FACTOR_ANALYSIS Function

Perform discriminant function 
analysis ................................  DISCR_ANALYSIS Procedure

Introduction

Cluster Analysis

Function K_MEANS performs a K-means cluster analysis. Basic K-means clus-
tering attempts to find a clustering that minimizes the within-cluster sums-of-
squares. In this method of clustering the data, matrix X is grouped so that each 
observation (row in X) is assigned to one of a fixed number, K, of clusters. The 
sum of the squared difference of each observation about its assigned cluster’s 
mean is used as the criterion for assignment. In the basic algorithm, observa-
tions are transferred from one cluster or another when doing so decreases the 
within-cluster sums-of-squared differences. When no transfer occurs in a pass 
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through the entire data set, the algorithm stops. Function K_MEANS is one 
implementation of the basic algorithm.

The usual course of events in K-means cluster analysis is to use K_MEANS to 
obtain the optimal clustering. The clustering is then evaluated by functions 
described in Chapter 1, Basic Statistics, and other chapters in this manual. 
Often, K-means clustering with more than one value of K is performed, and the 
value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion 
of function K_MEANS assumes the clustering is to be performed on the obser-
vations, which correspond to the rows of the input data matrix. If variables, 
rather than observations, are to be clustered, the data matrix should first be 
transposed. In the documentation for K_MEANS, the words “observation” and 
“variable” can be interchanged.

Principal Components

The idea in principal components is to find a small number of linear combina-
tions of the original variables that maximize the variance accounted for in the 
original data. This amounts to an eigensystem analysis of the covariance (or 
correlation) matrix. In addition to the eigensystem analysis, PRINC_COMP 
computes standard errors for the eigenvalues. Correlations of the original vari-
ables with the principal component scores also are computed.

Factor Analysis

Factor analysis and principal component analysis, while quite different in 
assumptions, often serve the same ends. Unlike principal components in which 
linear combinations yielding the highest possible variances are obtained, factor 
analysis generally obtains linear combinations of the observed variables accord-
ing to a model relating the observed variable to hypothesized underlying factors, 
plus a random error term called the unique error or uniqueness. In factor analy-
sis, the unique errors associated with each variable are usually assumed to be 
independent of the factors. Additionally, in the common factor model, the 
unique errors are assumed to be mutually independent. The factor analysis 
model is expressed in the following equation:

x – µ = Λf + e 

where x is the p vector of observed values, µ is the p vector of variable means, 
Λ is the p x k matrix of factor loadings, f is the k vector of hypothesized under-
lying random factors, e is the p vector of hypothesized unique random errors, p 
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is the number of variables in the observed variables, and k is the number of 
factors.

Because much of the computation in factor analysis was originally done by 
hand or was expensive on early computers, quick (but “dirty”) algorithms that 
made the calculations possible were developed. One result is the many factor 
extraction methods available today. Generally speaking, in the exploratory or 
model-building phase of a factor analysis, a method of factor extraction that is 
not computationally intensive (such as principal components, principal factor, or 
image analysis) is used. If desired, a computationally intensive method is then 
used to obtain the final factors.

K_MEANS Function 
Performs a K-means (centroid) cluster analysis.

Usage

result = K_MEANS(x, seeds)

Input Parameters

x — Two-dimensional array containing the observations to be clustered. The 
data value for the i-th observation of the j-th variable should be in x(i, j) .

seeds — Two-dimensional array containing the cluster seeds, i.e., estimates for 
the cluster centers. The seed value for the j-th variable of the i-th seed should 
be in seeds (i, j).

Returned Value

result — The cluster membership for each observation is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array containing the weight of each observation of 
matrix x.

Default: Weights(*) = 1
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Frequencies — One-dimensional array containing the frequency of each obser-
vation of matrix x.

Default: Frequencies(*) = 1

Itmax — Maximum number of iterations. 

Default: Itmax = 30

Var_Columns — One-dimensional array containing the columns of x to be used 
in computing the metric. Columns are numbered 0, 1, 2, ..., 
N_ELEMENTS(x(0, *)).

Default: Vars_Columns(*) = 0, 1, 2, ..., N_ELEMENTS(x(0, *)) – 1

Output Keywords

Means_Cluster — Named variable into which a two-dimensional array contain-
ing the cluster means is stored.

Ssq_Cluster — Named variable into which a one-dimensional array containing 
the within sum-of-squares for each cluster is stored.

Counts_Cluster — Named variable into which an array containing the number 
of observations in each cluster is stored.

Discussion

Function K_MEANS is an implementation of Algorithm AS 136 by 
Hartigan and Wong (1979). This function computes K-means (centroid) Euclid-
ean metric clusters for an input matrix starting with initial estimates of the K-
cluster means. The K_MEANS function allows for missing values coded as 
NaN (Not a Number) and for weights and frequencies.

Let p = N_ELEMENTS( x (0, *)) be the number of variables to be used in com-
puting the Euclidean distance between observations. The idea in K-means 
cluster analysis is to find a clustering (or grouping) of the observations so as to 
minimize the total within-cluster sums-of-squares. In this case, the total sums-
of-squares within each cluster is computed as the sum of the centered sum-of-
squares over all nonmissing values of each variable. That is, 

φ fνim
wν im

δνim j, xνim j, xij–( )2
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where νim denotes the row index of the m-th observation in the i-th cluster in 
the matrix X; ni is the number of rows of X assigned to group i; f denotes the 
frequency of the observation; w denotes its weight; δ is 0 if the j-th variable on 
observation νim is missing, otherwise δ is 1; and

 

is the average of the nonmissing observations for variable j in group i. This 
method sequentially processes each observation and reassigns it to another clus-
ter if doing so results in a decrease of the total within-cluster sums-of-squares. 
See Hartigan and Wong (1979) or Hartigan (1975) for details.

Example

This example performs K-means cluster analysis on Fisher’s iris data, which is 
obtained by function STATDATA. The initial cluster seed for each iris type is an 
observation known to be in the iris type.

seeds = MAKE_ARRAY(3,4)

x = STATDATA(3)

seeds(0, *) = x(0, 1:4)

seeds(1, *) = x(50, 1:4)

seeds(2, *) = x(100, 1:4)

; Use Columns 1, 2, 3, and 4 of data matrix x, only.

cluster_group = K_MEANS(x(*, 1:4), seeds, $

Means_Cluster = means_cluster, $

Ssq_Cluster= ssq_cluster, $

Counts_Cluster = counts_cluster)

format = ’(a, 10i4)’

FOR i = 0, 140, 10 DO BEGIN &$

PRINT, "observation: ",i + INDGEN(10)+1, $

Format = format &$

PRINT, "cluster: ", cluster_group(i:i+9), $

Format = format &$

PRINT &$

END

; Print cluster membership in groups of 10.

xij
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observation: 1   2   3   4   5   6   7   8   9  10

cluster    : 1   1   1   1   1   1   1   1   1   1

observation: 11  12  13  14  15  16  17  18  19  20

cluster    : 1   1   1   1   1   1   1   1   1   1

observation: 21  22  23  24  25  26  27  28  29  30

cluster    : 1   1   1   1   1   1   1   1   1   1

observation: 31  32  33  34  35  36  37  38  39  40

cluster    : 1   1   1   1   1   1   1   1   1   1

observation: 41  42  43  44  45  46  47  48  49  50

cluster    : 1   1   1   1   1   1   1   1   1   1

observation: 51  52  53  54  55  56  57  58  59  60

cluster    : 2   2   3   2   2   2   2   2   2   2

observation: 61  62  63  64  65  66  67  68  69  70

cluster    : 2   2   2   2   2   2   2   2   2   2

observation: 71  72  73  74  75  76  77  78  79  80

cluster    : 2   2   2   2   2   2   2   3   2   2

observation: 81  82  83  84  85  86  87  88  89  90

cluster    : 2   2   2   2   2   2   2   2   2   2

observation: 91  92  93  94  95  96  97  98  99 100

cluster    : 2   2   2   2   2   2   2   2   2   2

observation: 101 102 103 104 105 106 107 108 109 110

cluster    : 3   2   3   3   3   3   2   3   3   3

observation: 111 112 113 114 115 116 117 118 119 120

cluster    : 3   3   3   2   2   3   3   3   3   2

observation: 121 122 123 124 125 126 127  128 129 130

cluster    : 3   2   3   2   3   3   2   2   3   3

observation: 131 132 133 134 135 136 137 138 139 140

cluster    : 3   3   3   2   3   3   3   3   2   3

observation: 141 142 143 144 145 146 147 148 149 150

cluster    : 3   3   2   3   3   3   2   3   3   2

PM, [[INDGEN(3) + 1],[means_cluster]], $

Title = "Cluster Means:", $

Format = ’(i3, 5x, 4f8.4)’

Cluster Means:

 1       5.0060  3.4280  1.4620  0.2460

2       5.9016  2.7484  4.3935  1.4339

3       6.8500  3.0737  5.7421  2.0711



PRINC_COMP Function  423

PM, [[INDGEN(3) + 1],[ssq_cluster]], $

Title = "Cluster Sums of Squares:", $

Format = ’(i3, 5x, f8.4)’

Cluster Sums of Squares:

 1      15.1510

2      39.8210 

3      23.8795

PM, [[INDGEN(3) + 1],[counts_cluster]], $

Title = $

"Number of Observations per Cluster:"

Number of Observations per Cluster:
1          50
2          62
3          38

Warning Errors

STAT_NO_CONVERGENCE — Convergence did not occur.

PRINC_COMP Function 
Computes principal components.

Usage

result = PRINC_COMP(covariances)

Input Parameters

covariances — Two-dimensional square matrix containing the covariance or 
correlation matrix.

Returned Value

result — One-dimensional array containing the eigenvalues of covariances 
ordered from largest to smallest.

Input Keywords

Double — If present and nonzero, double precision is used.
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Cov_Matrix — If present and nonzero, treats the input matrix covariances as a 
covariance matrix. Keywords Cov_Matrix and Corr_Matrix cannot be used 
together. Default: Cov_Matrix = 1 
Corr_Matrix — If present and nonzero, treats the input matrix covariances as a 
correlation matrix. 

Output Keywords

Cum_Percent — Named variable into which the one-dimensional array contain-
ing the cumulative percent of the total variances explained by each principal 
component is stored.

Eigenvectors — Named variable into which the two-dimensional array contain-
ing the eigenvectors of covariances, stored columnwise, is stored. Each vector 
is normalized to have Euclidean length equal to the value 1. Also, the sign of 
each vector is set so that the largest component in magnitude (the first of the 
largest if ties exist) is made positive.

Correlations — Named variable into which the one-dimensional array of length 
containing the correlations of the principal components (the columns) with the 
observed/standardized variables (the rows) is stored. If Cov_Matrix is present 
and nonzero, the correlations are with the observed variables; otherwise, the 
correlations are with the standardized variables (to a variance of 1.0). In the 
principal component model for factor analysis, matrix Correlations is the matrix 
of unrotated factor loadings.

Df — Named variable into which the number of degrees of freedom in 
covariances is stored. Keywords Df and Stdev must be used together.

Stdev — Named variable into which the one-dimensional array containing the 
estimated asymptotic standard errors of the eigenvalues is stored. Keywords Df 
and Stdev must be used together.

Discussion

Function PRINC_COMP finds the principal components of a set of variables 
from a sample covariance or correlation matrix. The characteristic roots, charac-
teristic vectors, standard errors for the characteristic roots, and the correlations 
of the principal component scores with the original variables are computed. 
Principal components obtained from correlation matrices are the same as princi-
pal components obtained from standardized variables (to unit variance).
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The principal component scores are the elements of the vector y = ΓTx, where Γ 
is the matrix whose columns are the characteristic vectors (eigenvectors) of the 
sample covariance (or correlation) matrix and x is the vector of observed (or 
standardized) random variables. The variances of the principal component 
scores are the characteristic roots (eigenvalues) of the covariance (correlation) 
matrix.

Asymptotic variances for the characteristic roots were first obtained by Gir-
schick (1939) and are given more recently by Kendall et al. (1983, p. 331). 
These variances are computed either for covariance matrices or for correlation 
matrices.

The correlations of the principal components with the observed (or standard-
ized) variables are given in the matrix correlations. When the principal 
components are obtained from a correlation matrix, Correlations is the same as 
the matrix of unrotated factor loadings obtained for the principal components 
model for factor analysis.

Example 1

In this example, principal components are computed for a nine-variable covari-
ance matrix. This example opens a file, cov.dat, and reads in the covariance 
matrix using the RMF procedure. The file cov.dat contains the following data:

1.0   0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639

0.523 1.0   0.479 0.506 0.418 0.462 0.547 0.283 0.645

0.395 0.479 1.0   0.355 0.27  0.254 0.452 0.219 0.504

0.471 0.506 0.355 1.0   0.691 0.791 0.443 0.285 0.505

0.346 0.418 0.27  0.691 1.0   0.679 0.383 0.149 0.409

0.426 0.462 0.254 0.791 0.679 1.0   0.372 0.314 0.472

0.576 0.547 0.452 0.443 0.383 0.372 1.0   0.385 0.68

0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.0   0.47

0.639 0.645 0.504 0.505 0.409 0.472 0.68  0.47  1.0

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9

CLOSE, unit

values = PRINC_COMP(covariances)

PM, values, Title = "Eigenvalues:"

Eigenvalues:

4.67692
1.26397

 0.844450
 0.555027
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 0.447076
 0.429125
 0.310241
 0.277006
 0.196197

Example 2

In this example, principal components are computed for a nine-variable correla-
tion matrix. This example uses the same data as the first example. 

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9

CLOSE, unit

values = PRINC_COMP(covariances, $

/Corr_Matrix, $

Eigenvectors   = ev, $

Stdev          = stdev, $

Df             = 100, $

Cum_Percent    = cp, $

Comp_Resp_Corr = a)

PM, [[values],[ev]], $
Title = "Eigenvalue Eigenvector:",$
Format = ’(f7.2, 2x, 9f7.2)’

Eigenvalue  Eigenvector:

4.68  0.35 -0.24  0.14 -0.33 -0.11  0.80  0.17 -0.12 -0.05

1.26  0.35 -0.11 -0.28 -0.22  0.77 -0.20  0.14 -0.30 -0.01

0.84  0.28 -0.27 -0.56  0.69 -0.15  0.15  0.01 -0.04 -0.10

0.56  0.37  0.40  0.04  0.12  0.00  0.12 -0.40 -0.12  0.71

0.45  0.31  0.50 -0.07 -0.02 -0.28 -0.18  0.73  0.01  0.00

0.43  0.35  0.46  0.18  0.11  0.12  0.07 -0.37  0.09 -0.68

0.31  0.35 -0.27 -0.07 -0.35 -0.52 -0.44 -0.29 -0.34 -0.11

0.28  0.24 -0.32  0.74  0.43  0.09 -0.20  0.19 -0.16  0.05

0.20  0.38 -0.25 -0.01 -0.15  0.05 -0.15 -0.03  0.85  0.12

PM, a, Title = "Matrix A:", Format = ’(9f7.2)’

Matrix A:

0.75  -0.26   0.13  -0.25  -0.07   0.52   0.10  -0.07  -0.02

0.76  -0.12  -0.26  -0.16   0.51  -0.13   0.08  -0.16  -0.00

0.60  -0.30  -0.51   0.52  -0.10   0.10   0.01  -0.02  -0.04
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0.79   0.45   0.04   0.09   0.00   0.08  -0.22  -0.06   0.31

0.68   0.56  -0.07  -0.02  -0.19  -0.12   0.41   0.00   0.00

0.75   0.51   0.17   0.08   0.08   0.05  -0.21   0.05  -0.30

0.75  -0.31  -0.07  -0.26  -0.35  -0.29  -0.16  -0.18  -0.05

0.52  -0.36   0.68   0.32   0.06  -0.13   0.10  -0.09   0.02

0.83  -0.28  -0.01  -0.11   0.03  -0.10  -0.01   0.45   0.05

PM, [[values], [stdev], [cp]], $
Title = "Eigenvalue  STD    PCT", $
Format = ’(3(3x,F5.2))’

Eigenvalue  STD    PCT
4.68     0.65   0.52
1.26     0.18   0.66
0.84     0.10   0.75
0.56     0.09   0.82
0.45     0.09   0.87
0.43     0.09   0.91
0.31     0.09   0.95
0.28     0.10   0.98
0.20     0.11   1.00

Warning Errors

STAT_100_DF — Because the number of degrees of freedom in Covariances 
and Df is less than or equal to zero, 100 degrees of freedom will be used.

STAT_COV_NOT_NONNEG_DEF — Keyword Eigenvectors(#) = #. One or 
more eigenvalues much less than zero are computed. The matrix Covariances is 
not nonnegative definite. In order to continue computations of Eigenvectors and 
Correlations, these eigenvalues are treated as zero.

STAT_FAILED_TO_CONVERGE — Iteration for the eigenvalue failed to con-
verge in 100 iterations before deflating.
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FACTOR_ANALYSIS Function 
Extracts initial factor-loading estimates in factor analysis.

Usage

result = FACTOR_ANALYSIS(covariances, n_factors)

Input Parameters

covariances — Two-dimensional array containing the variance-covariance or 
correlation matrix.

n_factors — Number of factors in the model.

Returned Value

result — A two-dimensional array containing the matrix of factor loadings.

Input Keywords

Double — If present and nonzero, double precision is used. 

NOTE  Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, 
Gen_Lsq, Image, and Alpha cannot be used together. 

Max_Likelihood — The number of degrees of freedom in covariances. Using 
Max_Likelihood forces the maximum likelihood (common factor) model to be 
used to obtain the estimates. 

Princ_Comp — If i present and nonzero, the principal component (principal 
component model) is used to obtain the estimates.

Princ_Factor — If present and nonzero, the principal factor (common factor 
model) is used to obtain the estimates.

Unwgt_Lsq — If present and nonzero, the unweighted least-squares (common 
factor model) method is used to obtain the estimates. This option is the default.

Gen_Lsq — If present and nonzero, the generalized least-squares (common fac-
tor model) method is used to obtain the estimates.

Image — If present and nonzero, the image-factor analysis (common factor 
model) method is used to obtain the estimates.
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Alpha — The number of degrees of freedom in covariances. Using Alpha 
forces the alpha-factor analysis (common factor model) method to be used to 
obtain the estimates.

Unique_Var_In — One-dimensional array of length N_ELEMENTS(covari-
ances(0, *))  containing the initial estimates of the unique variances.

Default: initial estimates are taken as the constant 
1 – n_factors / 2 * N_ELEMENTS(covariances(0, *)) divided by the 
diagonal elements of the inverse of covariances

Itmax — Maximum number of iterations in the iterative procedure.

Default: Itmax = 60

Max_Steps — Maximum number of step halvings allowed during any one 
iteration.

Default: Max_Steps = 10 

Eps — Convergence criterion used to terminate the iterations. For the 
unweighted least squares, generalized least squares, or maximum likelihood 
methods, convergence is assumed when the relative change in the criterion is 
less than Eps. For alpha-factor analysis, convergence is assumed when the max-
imum change (relative to the variance) of a uniqueness is less than Eps.

Default: Eps = 0.0001

Switch_Eps — Convergence criterion used to switch to exact second deriva-
tives. When the largest relative change in the unique standard deviation vector 
is less than Switch_Eps, exact second derivative vectors are used. The value of 
Switch_Eps is not used with the principal component, principal factor, image-
factor analysis, or alpha-factor analysis methods.

Default: Switch_Eps = 0.1

Output Keywords

Unique_Var_Out — One-dimensional array of length N_ELEMENTS(covari-
ances(0, *)) containing the estimated unique variances.

Eigenvalues — Named variable into which a one-dimensional array of length 
N_ELEMENTS(covariances(0, *)) containing the eigenvalues of the matrix 
from which the factors were extracted is stored.

Chi_Sq_Test — Named variable into which a one-dimensional array of length 
3, containing the chi-squared test statistics, is stored. The contents of the array 
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are, in order, the number of degrees of freedom in chi-squared, the chi-squared 
test statistic for testing that n_factors common factors are adequate for the data, 
and the probability of a greater chi-squared statistic.

Tucker_Coef — Named variable into which the Tucker reliability coefficient is 
stored.

Iters — Named variable into which the number of iterations is stored.

F_Min — Named variable into which the value of the function minimum is 
stored.

Last_Step — Named variable into which an array of length 
N_ELEMENTS(covariances(0, *)) containing the updates of the unique vari-
ance estimates when convergence was reached (or the iterations terminated) is 
stored. 

Discussion

Function S computes unrotated factor loadings in exploratory factor-analysis 
models. Models available in FACTOR_ANALYSIS are the principal compo-
nent model for factor analysis and the common factor model with additions to 
the common factor model in alpha-factor analysis and image analysis. Methods 
of estimation include principal components, principal factor, image analysis, 
unweighted least squares, generalized least squares, and maximum likelihood.

In the factor-analysis model used for factor extraction, the basic model is given 
as Σ = ΛΛT + Ψ, where Σ is the p x p population covariance matrix, Λ is the p x 
k matrix of factor loadings relating the factors f to the observed variables x, and 
Ψ is the p x p matrix of covariances of the unique errors e. Here, p = 
N_ELEMENTS(covariances(0, *)) and k = n_factors. The relationship between 
the factors, the unique errors, and the observed variables is given as x = Λf + e, 
where in addition, the expected values of e, f, and x are assumed to be zero. 
(The sample means can be subtracted from x if the expected value of x is not 
zero.) It also is assumed that each factor has unit variance, that the factors are 
independent of each other, and that the factors and the unique errors are mutu-
ally independent. In the common factor model, the elements of unique errors e 
also are assumed to be independent of one another so that the matrix Ψ is diag-
onal. This is not the case in the principal component model in which the errors 
may be correlated.

Further differences between the various methods concern the criterion that is 
optimized and the amount of computer effort required to obtain estimates. Gen-
erally speaking, the least-squares and maximum likelihood methods, which use 
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iterative algorithms, require the most computer time with the principal factor, 
principal component and the image methods requiring much less time since the 
algorithms in these methods are not iterative. The algorithm in alpha-factor 
analysis is also iterative, but the estimates in this method generally require 
somewhat less computer effort than the least squares and maximum likelihood 
estimates. In all methods, one eigensystem analysis is required on each iteration.

Principal Component and Principal Factor Methods

Both the principal component and principal factor methods compute the factor-
loading estimates as

, 

where Γ and the diagonal matrix ∆ are the eigenvectors and eigenvalues of a 
matrix. In the principal component model, the eigensystem analysis is per-
formed on the sample covariance (correlation) matrix S, while in the principal 
factor model, the matrix (S + Ψ) is used. If the unique error variances Ψ are not 
known in the principal factor mode, then FACTOR_ANALYSIS obtains esti-
mates for them. 

The basic idea in the principal component method is to find factors that maxi-
mize the variance in the original data that is explained by the factors. Because 
this method allows the unique errors to be correlated, some factor analysts insist 
that the principal component method is not a factor analytic method. Usually, 
however, the estimates obtained by the principal component model and factor 
analysis model are quite similar.

It should be noted that both the principal component and principal factor meth-
ods give different results when the correlation matrix is used in place of the 
covariance matrix. In fact, any rescaling of the sample covariance matrix can 
lead to different estimates with either of these methods. A further difficulty with 
the principal factor method is the problem of estimating the unique error vari-
ances. Theoretically, these variances must be known in advance and must be 
passed to FACTOR_ANALYSIS using the keyword Unique_Var_In. In prac-
tice, the estimates of these parameters are produced by FACTOR_ANALYSIS 
when Unique_Var_In is not specified. In either case, the resulting adjusted 
covariance (correlation) matrix

 

Γ
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∆
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may not yield the n_factors positive eigenvalues required for n_factors factors 
to be obtained. If this occurs, the user must either lower the number of factors 
to be estimated or give new unique error variance values.

Least-squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in 
this section is iterative (see Jöreskog 1977). As with the principal factor model, 
the user can either initialize the unique error variances or allow 
FACTOR_ANALYSIS to compute initial estimates. Unlike the principal factor 
method, FACTOR_ANALYSIS optimizes the criterion function with respect to 
both Ψ and Γ. (In the principal factor method, Ψ is assumed to be known. 
Given Ψ, estimates for Λ may be obtained.)

The major difference between the methods discussed in this section is in the cri-
terion function that is optimized. Let S denote the sample covariance 
(correlation) matrix, and let Σ denote the covariance matrix that is to be esti-
mated by the factor model. In the unweighted least-squares method, also called 
the iterated principal factor method or the minres method (see Harman 1976, p. 
177), the function minimized is the sum-of-squared differences between S and 
Σ. This is written as

Φul = 0.5 (trace(S – Σ)2 ).

Generalized least-squares and maximum-likelihood estimates are asymptoti-
cally equivalent methods. Maximum-likelihood estimates maximize the (normal 
theory) likelihood 

{φml = trace(Σ–1S) – log( | Σ–1S | )}, while generalized least squares optimizes 
the function Φgs = trace(ΣS –1 – I)2.

In all three methods, a two-stage optimization procedure is used. This proceeds 
by first solving the likelihood equations for Λ in terms of Ψ and substituting the 
solution into the likelihood. This gives a criterion φ( Ψ, Λ(Ψ) ), which is opti-
mized with respect to Ψ. In the second stage, the estimates

 

are obtained from the estimates for Ψ. 

The generalized least-squares and maximum-likelihood methods allow for the 
computation of a statistic (Chi_Sq_Test) for testing that n_factors common fac-
tors are adequate to fit the model. This is a chi-squared test that all remaining 

Λ
ˆ
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parameters associated with additional factors are zero. If the probability of a 
larger chi-squared is so small that the null hypothesis is rejected, then additional 
factors are needed (although these factors may not be of any practical impor-
tance). Failure to reject does not legitimize the model. The statistic Chi_Sq_Test 
is a likelihood ratio statistic in maximum likelihood estimation. As such, it 
asymptotically follows a chi-squared distribution with degrees of freedom given 
by Df.

The Tucker and Lewis reliability coefficient, ρ, is returned by Tucker_Coef 
when the maximum likelihood or generalized least-squares methods are used. 
This coefficient is an estimate of the ratio of explained variation to the total 
variation in the data. It is computed as follows:

where | S | is the determinant of covariances; 
p = N_ELEMENTS(covariances(0, *)); 
k = N_ELEMENTS(covariances(0, *)); 
φ is the optimized criterion; and d = Df. 

Image Analysis

The term image analysis is used here to denote the noniterative image method 
of Kaiser (1963), rather than the image analysis discussed by Harman (1976, p. 
226). The image method (as well as the alpha-factor analysis method) begins 
with the notion that only a finite number from an infinite number of possible 
variables have been measured. The image-factor pattern is calculated under the 
assumption that the ratio of the number of factors to the number of observed 
variables is near zero, so that a very good estimate for the unique error vari-
ances (for standardized variables) is given as 1 minus the squared multiple 
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correlation of the variable under consideration with all variables in the covari-
ance matrix.

First, the matrix D2 = (diag(S –1)) –1 is computed, where the operator “diag” 
results in a matrix consisting of the diagonal elements of its argument and S is 
the sample covariance (correlation) matrix. Then, the eigenvalues Λ and eigen-
vectors Γ of the matrix D –1SD–1 are computed. Finally, the unrotated image-
factor pattern is computed as DΓ [ ( Λ – I )2 Λ–1 ]1 / 2.

Alpha-factor Analysis

The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-
loading estimates to maximize the correlation between the factors and the com-
plete universe of variables of interest. The basic idea in this method is that only 
a finite number of variables out of a much larger set of possible variables is 
observed. The population factors are linearly related to this larger set, while the 
observed factors are linearly related to the observed variables. Let f denote the 
factors obtainable from a finite set of observed random variables, and let ξ 
denote the factors obtainable from the universe of observable variables. Then, 
the alpha method attempts to find factor-loading estimates so as to maximize 
the correlation between f and ξ. In order to obtain these estimates, the iterative 
algorithm of Kaiser and Caffrey (1965) is used.

Comments

1. Function FACTOR_ANALYSIS makes no attempt to solve for n_factors. In 
general, if n_factors is not known in advance, several different values of 
n_factors should be used and the most reasonable value kept in the final 
solution.

2. Iterative methods are generally thought to be superior from a theoretical 
point of view, but in practice, often lead to solutions that differ little from 
the noniterative methods. For this reason, it is usually suggested that a non-
iterative method be used in the initial stages of the factor analysis and that 
the iterative methods be used when issues such as the number of factors 
have been resolved.

3. Initial estimates for the unique variances can be input. If the iterative meth-
ods fail for these values, new initial estimates should be tried. These can be 
obtained by use of another factoring method. (Use the final estimates from 
the new method as the initial estimates in the old method.)
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Example 1

In this example, factor analysis is performed for a nine-variable matrix using 
the default method of unweighted least squares. This example opens a file, 
cov.dat, and reads in the covariance matrix using procedure RMF. The file 
cov.dat contains the following data: 

1.0    0.523  0.395  0.471  0.346  0.426  0.576  0.434  0.639

0.523  1.0    0.479  0.506  0.418  0.462  0.547  0.283  0.645

0.395  0.479  1.0    0.355  0.27   0.254  0.452  0.219  0.504

0.471  0.506  0.355  1.0    0.691  0.791  0.443  0.285  0.505

0.346  0.418  0.27   0.691  1.0    0.679  0.383  0.149  0.409

0.426  0.462  0.254  0.791  0.679  1.0    0.372  0.314  0.472

0.576  0.547  0.452  0.443  0.383  0.372  1.0    0.385  0.68

0.434  0.283  0.219  0.285  0.149  0.314  0.385  1.0    0.47

0.639  0.645  0.504  0.505  0.409  0.472  0.68   0.47   1.0

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9

CLOSE, unit

n_factors = 3

a = FACTOR_ANALYSIS(cov, n_factors)

PM, a, Title = "Unrotated Loadings:"

Unrotated Loadings:

 0.701801    -0.231594 0.0795559

0.719964    -0.137227  -0.208225

0.535122    -0.214389  -0.22709

0.790669     0.405017   0.00704257

0.653203     0.422066  -0.104563

0.753915     0.484247  0.160720

0.712674    -0.281911  -0.0700779

0.483540    -0.262720   0.461992

0.819210    -0.313728  -0.0198735

Example 2

The following data were originally analyzed by Emmett (1949). There are 211 
observations on nine variables. Following Lawley and Maxwell (1971), three 
factors are obtained by the method of maximum likelihood. This example uses 
the same data as the first example.

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9



436  Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

CLOSE, unit

n_factors = 3

a = FACTOR_ANALYSIS(cov, n_factors, $

Max_Likelihood=210, Switch_Eps=0.01, $

Eps=0.000001, Itmax=30, Max_Steps=10)

PM, a, Title = "Unrotated Loadings:"

Unrotated Loadings:

 0.664210    -0.320874    0.0735207
0.688833    -0.247138    -0.193280

 0.492616    -0.302161    -0.222433
 0.837198     0.292427   -0.0353954
 0.705002     0.314794    -0.152784
 0.818701     0.376672     0.104524
 0.661494    -0.396031   -0.0777453
 0.457925    -0.295526     0.491347
 0.765668    -0.427427   -0.0116992

Warning Errors

STAT_VARIANCES_INPUT_IGNORED — When using the keyword 
Princ_Comp, the unique variances are assumed to be zero. Input for 
Unique_Var_In is ignored.

STAT_TOO_MANY_ITERATIONS — Too many iterations. Convergence is 
assumed.

STAT_NO_DEG_FREEDOM — No degrees of freedom for the significance 
testing.

STAT_TOO_MANY_HALVINGS — Too many step halvings. Convergence is 
assumed. 

Fatal Errors

STAT_HESSIAN_NOT_POS_DEF — Approximate Hessian is not semidefi-
nite on iteration #. The computations cannot proceed. Try using different initial 
estimates.

STAT_FACTOR_EVAL_NOT_POS — Variable Eigenvalues(#) = #. An eigen-
value corresponding to a factor is negative or zero. Either use different initial 
estimates for Unique_Var_In or reduce the number of factors.

STAT_COV_NOT_POS_DEF — Parameter covariances is not positive 
semidefinite. The computations cannot proceed.
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STAT_COV_IS_SINGULAR — Matrix covariances is singular. The computa-
tions cannot continue because variable # is linearly related to the remaining 
variables.

STAT_COV_EVAL_ERROR — An error occurred in calculating the eigenval-
ues of the adjusted (inverse) covariance matrix. Check covariances.

STAT_ALPHA_FACTOR_EVAL_NEG — In alpha-factor analysis on iteration #, 
eigenvalue # is #. As all eigenvalues corresponding to the factors must be posi-
tive, either the number of factors must be reduced or new initial estimates for 
Unique_Var_In must be given.

DISCR_ANALYSIS Procedure 
Performs a linear or a quadratic discriminant function analysis among several 
known groups.

Usage

DISCR_ANALYSIS, x, n_groups

Input Parameters

x — Two-dimensional array of size n_rows by n_variables + 1 containing the 
data where n_rows = N_ELEMENTS(x(*,0)), the number of rows to be pro-
cessed and n_variables = number of variables to be used in the discrimination. 
The first n_variables columns correspond to the variables, and the last column 
contains the group numbers. The groups must be numbered 1, 2, ..., n_groups.

n_groups — Number of groups in the data.

Input Keywords

Double — If present and nonzero, double precision is used.

Idx_Cols — One-dimensional array containing the indices of the variables to be 
used in the analysis.

Idx_Vars — Three element array indicating the column numbers of x 
in which particular types of data are stored. Columns are numbered 
0 ... N_ELEMENTS(Idx_Cols) − 1.

Idx_Vars(0) contains the index for the column of x in which the group numbers 
are stored.
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Idx_Vars(1) and Idx_Vars(2) contain the column numbers of x in which the fre-
quencies and weights, respectively, are stored. Set Idx_Vars(1) = −1 if there 
will be no column for frequencies. Set Idx_Vars(2) = −1 if there will be no col-
umn for weights. Weights are rounded to the nearest integer. Negative weights 
are not allowed.

Defaults: Idx_Cols = 0, 1, ..., n_variables - 1,

               Idx_Vars(0) =   n_variables,  

               Idx_Vars(1) = −1, and

               Idx_Vars(2) = −1

Method — Method of discrimination. The method chosen determines whether 
linear or quadratic discrimination is used, whether the group covariance matri-
ces are computed (the pooled covariance matrix is always computed), and 
whether the leaving-out-one or the reclassification method is used to classify 
each observation.

In the leaving-out-one method of classification, the posterior probabilities are 
adjusted so as to eliminate the effect of the observation from the sample statis-
tics prior to its classification. In the classification method, the effect of the ob-
servation is not eliminated from the classification function.

Default: Method = 1

Prior_Equal — By default, (or if Prior_Equal is used), equal prior probabilities 
are calculated as 1.0/n_groups. Keywords Prior_Equal, Prior_Prop, and 
Prior_Input must not be used together.

Prior_Prop — If present, prior probabilities are calculated to be proportional to 
the sample size in each group. Keywords Prior_Prop, Prior_Equal, and 
Prior_Input must not be used together.

Method
discrimination
method

covariances
computed

classification
method

1 linear pooled, group reclassification

2 quadratic pooled, group reclassification

3 linear pooled reclassification

4 linear pooled, group leaving-out-one

5 quadratic pooled, group leaving-out-one

6 linear pooled leaving-out-one
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Prior_Input — If present, an array of length n_groups containing the prior 
probabilities for each group, such that the sum of all prior probabilities is equal 
to 1.0. Keywords Prior_Input, Prior_Equal, and Prior_Prop must not be used 
together.

Output Keywords

Prior_Output — Named variable into which an one-dimensional array of length 
n_groups containing the most recently calculated or input prior probabilities is 
stored.

Group_Counts — Named variable into which an one-dimensional integer array 
of length n_groups containing the number of observations in each group is 
stored.

Means — Named variable into which a two-dimensional array of size 
n_groups by n_variables containing the variable means is stored. The i-th row 
of means contains the group i variable means.

Covariances — Named variable into which a three-dimensional array of size g 
by n_variables by n_variables containing covariance results is stored.  The with-
in-group covariance matrices (Method 1, 2, 4, and 5 only) is the first g-1 matri-
ces, and the pooled covariance matrix is the g-th matrix.

Coefficients — Named variable into which a two-dimensional array of size 
n_groups by (n_variables + 1) containing the linear discriminant coefficients is 
stored. The first column of Coefficients contains the constant term, and the re-
maining columns contain the variable coefficients. Row i − 1 of Coefficients 
corresponds to group i, for i = 1, 2, ..., n_variables + 1. Array Coefficients are 
always computed as the linear discriminant function coefficients even when 
quadratic discrimination is specified.

Class_Member — Named variable into which an one-dimensional integer array 
of length n_rows containing the group to which the observation was classified is 
stored.

If an observation has an invalid group number, frequency, or weight when the 
leaving-out-one method has been specified, then the observation is not classified 
and the corresponding elements of Class_Member (and Prob, see Prob below) 
are set to zero.

Class_Table — Named variable into which a two-dimensional array of size 
n_groups by n_groups containing the classification table is stored.  Each obser-
vation that is classified and has a group number 1.0, 2.0, ..., n_groups is entered 
into the table. The rows of the table correspond to the known group member-
ship. The columns refer to the group to which the observation was classified. 

Prob — Named variable into which a two-dimensional array of size 
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n_rows by n_groups containing the posterior probabilities for each 
observation is stored. 

Mahalanobis — Named variable into which a two-dimensional array of size 
n_groups by n_groups containing the Mahalanobis distances 

between the group means is stored.

For linear discrimination, the Mahalanobis distance is computed using the 
pooled covariance matrix. Otherwise, the Mahalanobis distance 

between group means i and j is computed using the within covariance matrix 
for group i in place of the pooled covariance matrix.

Stats — Named variable into which an one-dimensional array of length 
4 + 2 * (n_groups + 1) containing various statistics of interest is stored. The 
first element of Stats is the sum of the degrees of freedom for the within-covari-
ance matrices. The second, third, and fourth elements of Stats correspond to the 
chi-squared statistic, its degrees of freedom, and the probability of a greater chi-
squared, respectively, of a test of the homogeneity of the within-covariance ma-
trices (not computed if Method is equal to 3 or 6). The fifth through 
5 + n_groups elements of Stats contain the log of the determinants of each 
group’s covariance matrix (not computed if Method is equal to 3 or 6) and of 
the pooled covariance matrix (element 4 + n_groups). Finally, the last n_groups 
+ 1 elements of Stats contain the sum of the weights within each group, and in 
the last position, the sum of the weights in all groups.

Nmissing — Named variable into which the number of rows of data encoun-
tered containing missing values (NaN) for the classification, group, weight, and/
or frequency variables is stored. If a row of data contains a missing value 
(NaN) for any of these variables, that row is excluded from the computations.

Comments

1. Common choices for the Bayesian prior probabilities are given by:
Prior_Input(i)  =  1.0/n_groups   (equal priors)
Prior_Input(i)  =  Group_Count/n_rows   (proportional priors)

Dij
2

Dij
2
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Prior_Input(i)  =  Past history or subjective judgment.
In all cases, the priors should sum to 1.0.

Discussion

Function DISCR_ANALYSIS performs discriminant function analysis using ei-
ther linear or quadratic discrimination. The output includes a measure of dis-
tance between the groups, a table summarizing the classification results, a 
matrix containing the posterior probabilities of group membership for each ob-
servation, and the within-sample means and covariance matrices. The linear dis-
criminant function coefficients are also computed.

Covariance matrices are defined as follows: Let Ni denote the sum of the fre-
quencies of the observations in group i and Mi denote the number of observa-
tions in group i. Then, if Si denotes the within-group i covariance matrix,

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj 
is the j-th observation column vector (in group i), and

denotes the mean vector of the observations in group i. The mean vectors are 
computed as

Given the means and the covariance matrices, the linear discriminant function 
for group i is computed as:
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where ln (pi) is the natural log of the prior probability for the i-th group, x is the 
observation to be classified, and Sp denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group co-
variance matrices Si. (S will be the pooled covariance matrix in linear discrimi-
nation, and Si otherwise.) The Mahalanobis distance between group i and group 
j is computed as:

Finally, the asymptotic chi-squared test for the equality of covariance matrices 
is computed as follows (Morrison 1976, p. 252):

where ni is the number of degrees of freedom in the i-th sample covariance ma-
trix, k is the number of groups, and 

where p is the number of variables.

The estimated posterior probability of each observation x belonging to group is 
computed using the prior probabilities and the sample mean vectors and esti-
mated covariance matrices under a multivariate normal assumption. Under qua-
dratic discrimination, the within-group covariance matrices are used to compute 
the estimated posterior probabilities. The estimated posterior probability of an 
observation x belonging to group i is 
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where

For the leaving-out-one method of classification (Method equal to 4, 5 or 6), the 
sample mean vector and sample covariance matrices in the formula for 

are adjusted so as to remove the observation x from their computation. For lin-
ear discrimination (Method equal to 1, 2, 4, or 6), the linear discriminant func-
tion coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observation in x is classified into a 
group; the result is tabulated in the array Class_Table and saved in the array 
Class_Member.  Array Class_Table is not altered at this stage if 
x(i)(Idx_Vars(0)) contains a group number that is out of range. If the reclas-
sification method is specified, then all observations with no missing values in 
the n_variables classification variables are classified. When the leaving-out-one 
method is used, observations with invalid group numbers, weights, frequencies, 
or classification variables are not classified. Regardless of the frequency, a 1 is 
added (or subtracted) from Class_Table for each row of x that is classified and 
contains a valid group number.

When Method > 3, adjustment is made to the posterior probabilities to remove 
the effect of the observation in the classification rule. In this adjustment, each 
observation is presumed to have a weight of x(i)(Idx_Vars(2)) if Idx_Vars(2) > 
−1 (and a weight of 1.0 if Idx_Vars(2) = −1), and a frequency of 1.0. See 
Lachenbruch (1975, p. 36) for the required adjustment.

The covariance matrices are computed from their LU factorizations.

Example

The following example uses liner discrimination with equal prior probabilities 
on Fisher’s (1936) iris data.

PRO print_results, counts, table, d2, prior_out, coef, means, $

               cov, stats, nrmiss
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   num  =  INDGEN(3)

   PRINT, "      Counts"

   PRINT, num + 1, Format = "(3I5)"

   PRINT, counts, Format = "(3I5)"

   PRINT

   PRINT, "        Table"

   PRINT, num + 1, Format = "(2X, 3I5)"

   FOR i  =  0, 2 DO $

      PRINT, num(i) + 1, table(i, *), Format = "(I2, 3I5)"

   PRINT

   PRINT, "           D2"

   PRINT, num + 1, Format = "(3I7)"

   FOR i  =  0, 2 DO $

      PRINT, num(i) + 1, d2(i, *), Format = "(I2, 3F7.1)"

   PRINT

   PRINT, "          Prior OUT"

   PRINT, num + 1, Format = "(3I10)"

   PRINT, prior_out, Format = "(3F10.4)"

   PRINT

   num  =  INDGEN(5)

   PRINT, "                         Coef"

   PRINT, num + 1, Format = "(1X, 5I10)

   FOR i  =  0, 2 DO $

   PRINT, num(i) + 1, coef(i, *), Format = "(I2, 5F10.1)"

   PRINT

   num  =  INDGEN(4)

   PRINT, "                  Means"

   PRINT, num + 1, Format = "(4I10)"

   FOR i  =  0, 2 DO $

      PRINT, num(i) + 1, means(i, *), Format = "(I2, 4F10.3)"

   PRINT

   PRINT, "             Covariance"

   PRINT, num + 1, Format = "(4I10)"

   FOR i  =  0, 3 DO $
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      PRINT, num(i) + 1, cov(0, *, i), Format = "(I2, 4F10.4)"

   PRINT

   num  =  INDGEN(12)

   PRINT, "           Stats"

   FOR i  =  0, 11 DO $

      PRINT, num(i) + 1, stats(i)

   PRINT

   PRINT, "nrmiss = ", nrmiss

END

idxv  =  [1, 2, 3, 4]

idxc  =  [0, -1, -1]

n_groups  =  3

method  =  3

; Retrieve the Fisher Iris Data Set

x  =  STATDATA(3)

DISCR_ANALYSIS, x, n_groups, Idx_Vars = idxv, $

            Idx_cols = idxc, Method = method, /Prior_Equal, $

            Prior_Output = prior_out, Group_Counts = counts, $

            Means = means, Covariances = cov, $

            Coefficients = coef, Class_Member = cm, $

            Class_Table = table, Prob = prob, $

            Mahalanobis = d2, Stats = stats, Nmissing = nrmiss

print_results, counts, table, d2, prior_out, coef, means, $

               cov, stats, nrmiss

      Counts

    1    2    3

   50   50   50

        Table

      1    2    3

 1   50    0    0

 2    0   48    2

 3    0    1   49

           D2
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      1      2      3

 1    0.0   89.9  179.4

 2   89.9    0.0   17.2

 3  179.4   17.2    0.0

          Prior OUT

         1         2         3

    0.3333    0.3333    0.3333

                         Coef

          1         2         3         4         5

 1     -86.3      23.5      23.6     -16.4     -17.4

 2     -72.9      15.7       7.1       5.2       6.4

 3    -104.4      12.4       3.7      12.8      21.1

                  Means

         1         2         3         4

 1     5.006     3.428     1.462     0.246

 2     5.936     2.770     4.260     1.326

 3     6.588     2.974     5.552     2.026

             Covariance

         1         2         3         4

 1    0.2650    0.0927    0.1675    0.0384

 2    0.0927    0.1154    0.0552    0.0327

 3    0.1675    0.0552    0.1852    0.0427

 4    0.0384    0.0327    0.0427    0.0419

           Stats

       1      147.000

       2          NaN

       3          NaN

       4          NaN

       5          NaN

       6          NaN

       7          NaN

       8     -9.95854

       9      50.0000
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      10      50.0000

      11      50.0000

      12      150.000

nrmiss =            0

Warning Errors

STAT_BAD_OBS_1 — In call #, row # of the data matrix, “x”, has group num-
ber = #. The group number must be an integer between 1.0 and “n_groups” = #, 
inclusively. This observation will be ignored.

STAT_BAD_OBS_2 — The leaving-out-one method is specified but this obser-
vation does not have a valid group number (Its group number is #.). This obser-
vation (row #) is ignored.

STAT_BAD_OBS_3 — The leaving-out-one method is specified but this obser-
vation does not have a valid weight or it does not have a valid frequency. This 
observation (row #) is ignored.

STAT_COV_SINGULAR_3 — The group # covariance matrix is singular. 
“Stats(1)” cannot be computed. “Stats(1)” and “Stats(3)” are set to the missing 
value code (NaN).

Fatal Errors

STAT_COV_SINGULAR_1 — The variance-covariance matrix for population 
number # is singular. The computations cannot continue.

STAT_COV_SINGULAR_2 — The pooled variance-covariance matrix is singu-
lar. The computations cannot continue.

STAT_COV_SINGULAR_4 — A variance-covariance matrix is singular. The 
index of the first zero element is equal to #.
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CHAPTER

10

Survival Analysis

Contents of Chapter
Analyzes survival data using a generalized 
linear model and estimates using various 
parametric modes..................  SURVIVAL_GLM Function 

Introduction
The routine described in this chapter have primary application in the areas of 
reliability and life testing, but they may find application in any situation in 
which time is a variable of interest. Kalbfleisch and Prentice (1980), Elandt-
Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless 
(1982), and Chiang (1968) are references for discussing the models and meth-
ods used here. Routine SURVIVAL_GLM (page 450) fits any of several gener-
alized linear models, and computes estimates of survival probabilities based on 
the same models.
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SURVIVAL_GLM Function 
Analyzes censored survival data using a generalized linear model and estimates 
survival probabilities and hazard rates for the various parametric models.

Usage

result = SURVIVAL_GLM(n_class, n_continuous, model, x)

Input Parameters

n_class — Number of classification variables.

n_continuous — Number of continuous variables.

model — Specifies the model used to analyze the data.

See the Discussion section for more information about these models.

x — Two-dimensional array of size n_observations by ((n_class + 
n_continuous) + m) containing data for the independent variables, dependent 
variable, and optional parameters where n_observations is the number of obser-
vations and the optional parameters correspond to keywords Icen, Ilt, Irt, Ifreq, 
and Ifix.

model PDF of the Response Variable

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

10 Weibull
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The columns must be ordered such that the first n_class columns contain data 
for the class variables, the next n_continuous columns contain data for the con-
tinuous variables, and the next column contains the response variable. The final 
(and optional) m − 1 columns contain the optional parameters. 

Returned Value

result — An integer value indicating n_coefficients, where n_coefficients is the 
number of estimated coefficients in the model.

Input Keywords

Double — If present and nonzero, double precision is used.

Icen — The column in x containing the censoring code for each observation.

Ilt — The column number of x containing the upper endpoint of the failure in-
terval for interval- and left-censored observations. 

Irt — The column number of x containing the lower endpoint of the failure in-
terval for interval- and right-censored observations.

Ifreq — The column number of x containing the frequency of response for each 
observation.

Ifix — Column number in x containing a fixed parameter for each observation 
that is added to the linear response prior to computing the model parameter. The 
“fixed” parameter allows one to test hypothesis about the parameters via the 
log-likelihoods. 

Eps — The convergence criterion. Convergence is assumed when the maxi-
mum relative change in any coefficient estimate is less than Eps from one itera-
tion to the next or when the relative change in the log-likelihood, criterion, from 
one iteration to the next is less than Eps/100.0.

x (I, Icen) Censoring type

0 Exact failure at x (i, Irt)

1 Right Censored. The response is greater than x (i, Irt) 

2 Left Censored. The response is less than or equal to x 
(i, Irt) 

3 Interval Censored. The response is greater than x (i, 
Irt), but less than or equal to x (i, Irt).
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Default: Eps = 0.001

Itmax — Maximum number of iterations. Use Itmax = 0 to compute the Hes-
sian, stored in Covariances, and the Newton step, stored in Last_Step, at the ini-
tial estimates (The initial estimates must be input. Use keyword Init_Est). See 
Example 3.

Default: Itmax = 30

No_Intercept — If present and nonzero, there is no intercept in the model.  By 
default, the intercept is automatically included in the model.

Lp_Max — Remove a right- or left-censored observation from the log-likeli-
hood whenever the probability of the observation exceeds 0.995. At conver-
gence, use linear programming to check that all removed observations actually 
have infinite linear response

Obs_Status(i) is set to 2 if the linear response is infinite (See output keyword 
Obs_Status). If not all removed observations have infinite linear response, re-
compute the estimates based upon the observations with finite

Keyword Lp_Max is the maximum number of observations that can be handled 
in the linear programming. Setting Lp_Max = n_observations is always suffi-
cient.   By default, the function iterates without checking for infinite estimates.

Default: No infinity checking; Lp_Max = 0

Var_Effects — One-dimensional array of length n_effects containing the num-
ber of variables associated with each effect in the model, where n_effects is the 
number of effects (sources of variation) in the model. Keywords Var_Effects 
and Indicies_Effects must be used together. 

Indicies_Effects — One-dimensional index array of length Var_Effects(0) + 
Var_Effects(1) + … + Var_Effects(n_effects − 1). The first Var_Effects(0) ele-
ments give the column numbers of x for each variable in the first effect. The 
next Var_Effects(1) elements give the column numbers for each variable in the 
second effect. The last Var_Effects(n_effects − 1) elements give the column 
numbers for each variable in the last effect. Keywords Indicies_Effects and 
Var_Effects must be used together.

zi
$β

zi
$β
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Init_Est — One-dimensional array containing the initial estimates of the param-
eters (which requires that the user know the number of coefficients in the model 
prior to the use of SURVIVAL_GLM). See output keyword Coef_Stat for a de-
scription of the “nuisance” parameter, which is the first element of array 
Init_Est. By default, unweighted linear regression is used to obtain initial esti-
mates.

Max_Class — An upper bound on the sum of the number of distinct values tak-
en on by each classification variable. Internal workspace usage can be signifi-
cantly reduced with an appropriate choice of Max_Class.

Default: Max_Class = n_observations * n_class

Estimation Input Keywords

Est_Nobs — Number of observations for which estimates are to be calculated. 
Est_Nobs must be positive. Keywords Est_Nobs, Est_Time, Est_Npt, Est_Delta, 
and Est_Prob must be used together.

Est_Time — Beginning of the time grid for which estimates are desired. Sur-
vival probabilities and hazard rates are computed for each covariate vector over 
the grid of time points Est_Time + i*Est_Delta for i = 0, 1, …, Est_Npt −1. 
Keywords Est_Time, Est_Nobs, Est_Npt, Est_Delta, and Est_Prob must be used 
together.

Est_Npt — Number of points on the time grid for which survival probabilities 
are desired. Est_Npt must be positive. Keywords Est_Npt, Est_Nobs, Est_Time, 
Est_Delta, and Est_Prob must be used together.

Est_Delta — Increment between time points on the time grid. Keywords 
Est_Delta, Est_Nobs, Est_Time, Est_Npt, and Est_Prob must be used together.

Output Keywords

N_Class_Vals — Named variable into which an one-dimensional array of 
length n_class containing the number of values taken by each classification 
variable is stored; the i-th classification variable has N_Class_Vals(i). 

Class_Vals — Named variable into which an one-dimensional array of length

containing the distinct values of the classification variables in ascending order is 
stored. The first N_Class_Vals(0) elements of Class_Vals contain the values for 

N_ Class_ Vals i
n_class � �

i=
∑

0

1-
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the first classification variables, the next N_Class_Vals(1) elements contain the 
values for the second classification variable, etc.

Coef_Stat — Named variable into which a two-dimensional array of size 
n_coefficients by 4 containing the parameter estimates and associated statistics 
is stored:

When present in the model, the first coefficient in Coef_Stat is the estimate of 
the “nuisance” parameter, and the remaining coefficients are estimates of the 
parameters associated with the “linear” model, beginning with the intercept, if 
present. Nuisance parameters are as follows:

Criterion — Named variable into which the optimized criterion is stored. The 
criterion to be maximized is a constant plus the log-likelihood.

Covariances — Named variable into which a two-dimensional array of size 
n_coefficients by n_coefficients containing the estimated asymptotic covariance 
matrix of the coefficients is stored. For Itmax = 0, this is the Hessian computed 
at the initial parameter estimates.

Means — Named variable into which an one-dimensional array containing the 
means of the design variables is stored. The array is of length n_coefficients − k 
if keyword No_Intercept is used, and of length n_coefficients − k − 1 otherwise. 
Here, k is equal to 0 if model = 0, and equal to 1 otherwise.

Case_Analysis — Named variable into which a two-dimensional array of size 
n_observations by 5 containing the case analysis below is stored:

Column Statistic

0 Coefficeient estimate.

1 Estimated standard deviation of the estimated 
coefficient.

2 Asymptotic normal score for testing that the 
coefficient is zero.

3 The p-value associated with the normal score 
in Column 2.

model

0 No nuisance parameter

1 Coefficient of the quadratic term, term in time, θ

2-9 Scale parameter, σ

10 Scale parameter, θ
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Last_Step — Named variable into which an one-dimensional array of length 
n_coefficients containing the last parameter updates (excluding step halvings) is 
stored. Keyword Last_Step is computed as the inverse of the matrix of second 
partial derivatives times the vector of first partial derivatives of the log-likeli-
hood. When Itmax = 0, the derivatives are computed at the initial estimates.

Obs_Status — Named variable into which an one-dimensional array of length 
n_observations indicating which observations are included in the extended like-
lihood is stored.

Iterations — Named variable into which a two-dimensional array of size, n by 
5 containing information about each iteration of the analysis is stored, where n 
is equal to the number of iterations.

Column Statistic

0 Estimated predicted value.

1 Estimated influence or leverage.

2 Estimated residual.

3 Estimated cumulative hazard..

4 Non-censored observation: Estimated density 
at the observation failure time and covariate 
values.
Censored observations: The corresponding 
estimated probability.

Obs_Status (i) Status of Observation

0 Observation i is in the likelihood

1 Observation i cannot be in the likelihood because 
it contains at least one missing value in x. 

2 Observation i is not in the likelihood. Its esti-
mated parameter is infinite.

Column Statistic

0 Method of iteration
Q-N Step = 0
N-R Step = 1

1 Iteration number

2 Step size
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Nmissing — Named variable into which the number of rows of data that con-
tain missing values in one or more of the following vectors or columns of x is 
stored: Icen, Ilt, Irt, Ifreq, Ifix, or Indicies_Effects.

Estimation Output Keywords

Est_Prob — Named variable into which a two-dimensional array of size 
Est_Npt by (2*n_observations + 1) containing the estimated survival probabili-
ties for the covariate groups specified in x is stored.  Column 0 contains the sur-
vival time.  Columns 1 and 2 contain the estimated survival probabilities and 
hazard rates, respectively, for the covariates in the first row of x. In general, the 
survival and hazard row i of x is contained in columns 2i - 1 and 2i, respective-
ly, for i = 1, 2,  …, Est_Npt. Keywords Est_Prob, Est_Nobs, Est_Time, 
Est_Npt, and Est_Delta must be used together. 

Est_Xbeta — Named variable into which an one-dimensional array of length 
n_observations containing the estimated linear response

for each row of x is stored. To use keyword Est_Xbeta, you must also use key-
words Est_Nobs, Est_Time, Est_Npt, Est_Delta, and Est_Prob.

Comments

1. Dummy variables are generated for the classification variables as follows: 
An ascending list of all distinct values of each classification variable is ob-
tained and stored in Class_Vals. Dummy variables are then generated for 
each but the last of these distinct values. Each dummy variable is zero un-
less the classification variable equals the list value corresponding to the 
dummy variable, in which case the dummy variable is one. See keyword 
Dummy_Method in the function REGRESSORS (Chapter 2, Regression).

2. The “product” of a classification variable with a covariate yields dummy 
variables equal to the product of the covariate with each of the dummy vari-
ables associated with the classification variable.

3 Maximum scaled coefficient update

4 Log-likelihood

Column Statistic

w x+ $β
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3. The “product” of two classification variables yields dummy variables in the 
usual manner. Each dummy variable associated with the first classification 
variable multiplies each dummy variable associated with the second classifi-
cation variable. The resulting dummy variables are such that the index of 
the second classification variable varies fastest.

Discussion

Function SURVIVAL_GLM computes the maximum likelihood estimates of pa-
rameters and associated statistics in generalized linear models commonly found 
in survival (reliability) analysis. Although the terminology used will be from the 
survival area, the methods discussed have applications in many areas of data 
analysis, including reliability analysis and event history analysis. These methods 
can be used anywhere a random variable from one of the discussed distributions 
is parameterized via one of the models available in SURVIVAL_GLM. Thus, 
while it is not advisable to do so, standard multiple linear regression can be per-
formed by routine SURVIVAL_GLM. Estimates for any of 10 standard models 
can be computed. Exact, left-censored, right-censored, or interval-censored ob-
servations are allowed (note that left censoring is the same as interval censor-
ing with the left endpoint equal to the left endpoint of the support of the 
distribution).

Let η = xTβ be the linear parameterization, where x is a design vector obtained 
by SURVIVAL_GLM via function REGRESSORS from a row of x, and β is a 
vector of parameters associated with the linear model. Let T denote the random 
response variable and S(t) denote the probability that T > t. All models consid-
ered also allow a fixed parameter wi for observation i (input in column Ifix of 
x). Use of this parameter is discussed below. There also may be nuisance pa-
rameters θ > 0, or σ > 0 to be estimated (along with β) in the various models. 
Let Φ denote the cumulative normal distribution. The survival models available 
in SURVIVAL_GLM are:

model Name S(t)

0 Exponential exp [− t exp (w i + η)

1 Linear hazard

exp exp− +
�
�

�
�� +

�
�
��

�
�
��t

t
wi

θ η
2

2
� �
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2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

model Name S(t)

1−
− −�

�
�
��Φ

ln t wi� � η
σ
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Note that the log-least-extreme-value model is a reparameterization of the 
Weibull model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, 
while all of the remaining models allow any value for T, −∞ < T < ∞.

Each row vector in the data matrix can represent a single observation; or, 
through the use of vector frequencies, each row can represent several observa-
tions. Also note that classification variables and their products are easily incor-
porated into the models via the usual regression-type specifications.

The constant parameter Wi is input in x and may be used for a number of pur-
poses. For example, if the parameter in an exponential model is known to de-
pend upon the size of the area tested, volume of a radioactive mass, or 
population density, etc., then a multiplicative factor of the exponential parame-
ter λ= exp (xβ) may be known apriori. This factor can be input in Wi (Wi is the 
log of the factor).

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2), 
where β2 is known. Letting Wi = x2β2, estimates for β1 can be obtained via 
SURVIVAL_GLM with the known fixed values for β2. Standard methods can 
then be used to test hypothesis about β1 via computed log-likelihoods.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

• Estimates of the means of the “independent” or design variables are com-
puted. Means are computed as

2. If initial estimates are not provided by the user (see keyword Init_Est), the 
initial estimates are calculated as follows:

10 Weibull

model Name S(t)

exp{
exp

}−
+

�
���

�
���
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f x
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• Models 2-10 

A.  Kaplan-Meier estimates of the survival probability,

at the upper limit of each failure interval are obtained. (Because upper lim-
its are used, interval- and left-censored data are assumed to be exact failures 
at the upper endpoint of the failure interval.) The Kaplan-Meier estimate is 
computed under the assumption that all failure distributions are identical 
(i.e., all β’s but the intercept, if present, are assumed to be zero). 

B. If there is an intercept in the model, a simple linear regression is per-
form predicting

where t′ is computed at the upper endpoint of each failure interval, 
t′ = t in models 3, 5, 7, and 9, and t′ = ln (t) in models 2, 4, 6, 8, and 10, 
and wi is the fixed constant, if present. 

If there is no intercept in the model, then α is fixed at zero, and the model 

is fit instead. In this model, the coefficients β are used in place of the loca-
tion estimate α above. Here

is estimated from the simple linear regression with α = 0.

$S t� �

S S t w ti
− − = + ′1

$� �� � α φ

S S t t w xi
T− − ′ − =1

$ $� �� � φ β
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C. If the intercept is in the model, then in log-location-scale models 
(models 1-8), 

and the initial estimate of the intercept is assumed to be 

In the Weibull model

and the intercept is assumed to be 

Initial estimates of all parameters β, other than the intercept, are assumed to 
be zero.

If there is no intercept in the model, the scale parameter is estimated as 
above, and the estimates 

from Step 2 are used as initial estimates for the β’s.

•  Models 0 and 1

For the exponential models (model = 0 or 1), the “average total time on” 
test statistic is used to obtain an estimate for the intercept. Specifically, let 
Tt denote the total number of failures divided by the total time on test. The 
initial estimates for the intercept is then ln(Tt). Initial estimates for the 

$
$σ φ=

$ .α

$ / $θ φ= 1

$ .α

$β
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remaining parameters β are assumed to be zero, and if model = 1, the initial 
estimate for the linear hazard parameter θ is assumed to be a small positive 
number. When the intercept is not in the model, the initial estimate for the 
parameter θ is assumed to be a small positive number, and initial estimates 
of the parameters β are computed via multiple linear regression as in Part 
A.

3.  A quasi-Newton algorithm is used in the initial iterations based on a Hes-
sian estimate

where l′iα j is the partial derivative of the i-th term in the log-likelihood with 
respect to the parameter αj, and aj denotes one of the parameters to be 
estimated.

When the relative change in the log-likelihood from one iteration to the 
next is 0.1 or less, exact second partial derivatives are used for the Hessian 
so the Newton-Rapheson iteration is used.

If the initial step size results in an increase in the log-likelihood, the full 
step is used. If the log-likelihood decreases for the initial step size, the step 
size is halved, and a check for an increase in the log-likelihood performed. 
Step-halving is performed (as a simple line search) until an increase in the 
log-likelihood is detected, or until the step size becomes very small (the ini-
tial step size is 1.0).

4. Convergence is assumed when the maximum relative change in any coeffi-
cient update from one iteration to the next is less than Eps or when the rela-
tive change in the log-likelihood from one iteration to the next is less than 
Eps/100. Convergence is also assumed after Itmax iterations or when step 
halving leads to a very small step size with no increase in the log-likeli-
hood.

5. If requested (see keyword Lp_Max), then the methods of Clarkson and Jen-
nrich (1988) are used to check for the existence of infinite estimates in

$H l
j l i ji l

i
κ κ α α= ′∑

η βi i
Tx=
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As an example of a situation in which infinite estimates can occur, suppose 
that observation j is right-censored with tj > 15 in a normal distribution 
model in which the mean is

where xj is the observation design vector. If the design vector xj for parame-
ter βm is such that xjm = 1 and xim = 0 for all i ≠ j, then the optimal 
estimate of βm occurs at

leading to an infinite estimate of both βm and ηj. In SURVIVAL_GLM, such 
estimates can be “computed.”

In all models fit by SURVIVAL_GLM, infinite estimates can only occur 
when the optimal estimated probability associated with the left- or right-
censored observation is 1. If infinity checking is on, left- or right-censored 
observations that have estimated probability greater than 0.995 at some 
point during the iterations are excluded from the log-likelihood, and the 
iterations proceed with a log-likelihood based on the remaining observa-
tions. This allows convergence of the algorithm when the maximum relative 
change in the estimated coefficients is small and also allows for a more pre-
cise determination of observations with infinite

At convergence, linear programming is used to ensure that the eliminated 
observations have infinite ηi. If some (or all) of the removed observations 
should not have been removed (because their estimated ηi’s must be finite), 
then the iterations are restarted with a log-likelihood based upon the finite 
ηi observations. See Clarkson and Jennrich (1988) for more details.

µ β ηj j
T

jx= =

$βm = ∞

η βi i
Tx=
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By default, or when not using keyword Lp_Max (see keyword Lp_Max), no 
observations are eliminated during the iterations. In this case, the infinite 
estimates occur, some (or all) of the coefficient estimates

will become large, and it is likely that the Hessian will become (numeri-
cally) singular prior to convergence.

6.  The case statistics are computed as follows: Let Ii (θi) denote the log-like-
lihood of the i-th observation evaluated at θi, let I′i denote the vector of de-

rivatives of Ii with respect to all parameters, I′η,i denote the derivative of Ii 

with respect to η = xTβ, H denote the Hessian, and E denote expectation. 
Then the columns of Case_Analysis are:

A. Predicted values are computed as E (T/x) according to standard formu-
las. If model is 4 or 8, and if s ≥ 1, then the expected values cannot be 
computed because they are infinite.

B. Following Cook and Weisberg (1982), the influence (or leverage) of the 
i-th observation is assumed to be

This quantity is a one-step approximation of the change in the estimates 
when the i-th observation is deleted (ignoring the nuisance parameters).

C. The “residual” is computed as I′η,i.

D. The cumulative hazard is computed at the observation covariate values 
and, for interval observations, the upper endpoint of the failure interval. The 
cumulative hazard also can be used as a “residual” estimate. If the model is 
correct, the cumulative hazards should follow a standard exponential distri-
bution. See Cox and Oakes (1984).

Function SURVIVAL_GLM computes estimates of survival probabilities and 
hazard rates for the parametric survival/reliability models when using the Est_* 
keywords.

Let η = xTβ be the linear parameterization, where x is the design vector corre-
sponding to a row of x (SURVIVAL_GLM generates the design vector using 

$β

′ ′−I H Ii
T

i� � 1
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function REGRESSORS), and β is a vector of parameters associated with the 
linear model. Let T denote the random response variable and S(t) denote the 
probability that T > t. All models considered also allow a fixed parameter w 
(input in column Ifix of x). Use of the keyword is discussed in above. There 
also may be nuisance parameters θ > 0 or σ > 0. Let λ(t) denote the hazard rate 
at time t. Then λ(t) and S(t) are related at

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume 
λ(s) = 0 for s < 0), while the remaining models allow arbitrary values for T, 
−∞ < T < ∞. The computations proceed in function SURVIVAL_GLM when 
using the keywords Est_* as follows:

1. The input arguments are checked for consistency and validity.

2. For each row of x, the explanatory variables are generated from the classifi-
cation and variables and the covariates using function REGRESSORS with 
keyword Dummy_Method.

3. For each point requested in the time grid, the survival probabilities and haz-
ard rates are computed.

Programming Notes

Indicator (dummy) variables are created for the classification variables using 
function REGRESSORS (Chapter 2, Regression) using keyword 
Dummy_Method.

Example 1

This example is taken from Lawless (1982, p. 287) and involves the mortality 
of patients suffering from lung cancer. An exponential distribution is fit for the 
model

η = µ + αi + γk + β6x3 + β7x4 + β8x5

where αi is associated with a classification variable with four levels, and γk is 
associated with a classification variable with two levels. Note that because the 
computations are performed in single precision, there will be some small varia-
tion in the estimated coefficients across different machine environments.

PRO print_results, cs

S t s dst� � � �= �−∞exp( )λ
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   PRINT, "                     Coefficient Satistics"

   PRINT, "    Coefficient      s.e            z             
p"

   PM, cs, Format = "(4F14.4)"

END

x  =  TRANSPOSE([ $

                [1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $

                [1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $

                [1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $

                [1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $

                [1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $

                [1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $

                [1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $

                [2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $

                [2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $

                [2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0] , $

                [2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $

                [2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $

                [2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $

                [2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $

                [3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $

                [3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $

                [4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $

                [4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $

                [4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $

                [4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0] , $

                [4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $

                [1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $

                [1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $

                [1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $

                [1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $

                [1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $

                [1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $

                [1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $

                [2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $

                [2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0] , $

                [2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $

                [2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $

                [3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $

                [3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $
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                [3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $

                [4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $

                [4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $

                [4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $

                [4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $

                [4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0]])

n_class  =  2

n_continuous  =  3

model  =  0

icen  =  6

irt  =  5 

lp_max  =  40

n_coef  =  SURVIVAL_GLM(n_class, n_continuous, model, x, $

                        Icen = icen, Irt = irt, $

                        Lp_Max = lp_max, Coef_Stat = cs)

print_results, cs

                     Coefficient Satistics

     Coefficient       s.e             z             p

       -1.1027        1.3091       -0.8423        0.3998

       -0.3626        0.4446       -0.8156        0.4149

        0.1271        0.4863        0.2613        0.7939

        0.8690        0.5861        1.4825        0.1385

        0.2697        0.3882        0.6948        0.4873

       -0.5400        0.1081       -4.9946        0.0000

       -0.0090        0.0197       -0.4594        0.6460

       -0.0034        0.0117       -0.2912        0.7710 

Example 2

This example is the same as Example 1, but more optional arguments are dem-
onstrated.

PRO print_results, cs, iter, crit, nmiss

   PRINT, "                     Coefficient Satistics"

   PRINT, "    Coefficient      s.e            z             
p"

   PM, cs, Format = "(4F14.4)"

   PRINT

   PRINT, "                    Iteration Information"
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   PRINT, "Method  Iteration   Step Size    Coef Update  ", $

               "Log-Likelihood"

   PM, iter, Format = "(I3, I10, 2F14.4, F14.1)"

   PRINT

   PRINT, "Log-Likelihood =", crit

   PRINT

   PRINT, "Number of Missing Value = ", nmiss,$

            Format = "(A26, I3)"

END

x  =  TRANSPOSE([ $

                [1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $

                [1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $

                [1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $

                [1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $

                [1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $

                [1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $

                [1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $

                [2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $

                [2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $

                [2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0] , $

                [2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $

                [2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $

                [2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $

                [2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $

                [3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $

                [3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $

                [4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $

                [4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $

                [4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $

                [4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0] , $

                [4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $

                [1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $

                [1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $

                [1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $

                [1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $

                [1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $

                [1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $

                [1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $

                [2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $
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                [2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0] , $

                [2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $

                [2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $

                [3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $

                [3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $

                [3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $

                [4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $

                [4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $

                [4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $

                [4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $

                [4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0]])

n_class  =  2

n_continuous  =  3

model  =  0

icen  =  6

irt  =  5 

lp_max  =  40

n_coef  =  SURVIVAL_GLM(n_class, n_continuous, model, x, $

                    Icen = icen, Irt = irt, Lp_Max = lp_max, 
$

                    N_Class_Vals = ncv, Class_Vals = cv, $

                    Coef_Stat = cs, Criterion = crit, $

                    Means = means, Case_Analysis = ca, $

                    Iterations = iter, Obs_Status = os, $

                    Nmissing = nmiss)

print_results, cs, iter, crit, nmiss

                     Coefficient Satistics

     Coefficient       s.e             z             p

       -1.1027        1.3091       -0.8423        0.3998

       -0.3626        0.4446       -0.8156        0.4149

        0.1271        0.4863        0.2613        0.7939

        0.8690        0.5861        1.4825        0.1385

        0.2697        0.3882        0.6948        0.4873

       -0.5400        0.1081       -4.9946        0.0000

       -0.0090        0.0197       -0.4594        0.6460

       -0.0034        0.0117       -0.2912        0.7710

                    Iteration Information

Method  Iteration   Step Size    Coef Update  Log-Likelihood
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  0         0           NaN           NaN        -224.0

  0         1        1.0000        0.9839        -213.4

  1         2        1.0000        3.6034        -207.3

  1         3        1.0000       10.1238        -204.3

  1         4        1.0000        0.1430        -204.1

  1         5        1.0000        0.0117        -204.1

Log-Likelihood =     -204.139

Number of Missing Value =   0

Example 3

In this example, the same data and model as example 1 are used, but Itmax is 
set to zero iterations with model coefficients restricted such that µ = −1.25, 
β6 = −0.6, and the remaining six coefficients are equal to zero. A chi-squared 
statistic, with 8 degrees of freedom for testing the coefficients is specified as 
above (versus the alternative that it is not as specified), can be computed, based 
on the output, as 

where 

is output in Covariances. The resulting test statistic, χ2 = 6.107, based upon no 
iterations is comparable to likelihood ratio test that can be computed from the 
log-likelihood output in this example (−206.683) and the log-likelihood output 
in Example 2 (-204.139).

PRO print_results, cs, means, cov, crit, ls

   PRINT, "                     Coefficient Satistics"

   PRINT, "     Coefficient       s.e             z          
p"

   PM, cs, Format = "(4F14.4)"

   PRINT

   PRINT, "                      Covariate Means"

   PRINT, means, Format = "(7F8.2)"

χ2 1= −g gT
$Σ

$Σ
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   PRINT

   PRINT, "                          Hessian"

   PM, cov, Format = "(8F8.4)"

   PRINT

   PRINT, "Log-Likelihood =", crit

   PRINT

   PRINT, "                        Newton_Raphson Step"

   PRINT, ls, Format = "(8F8.4)"

END

x  =  TRANSPOSE([ $

                [1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $

                [1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $

                [1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $

                [1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $

                [1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $

                [1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $

                [1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $

                [2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $

                [2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $

                [2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0] , $

                [2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $

                [2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $

                [2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $

                [2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $

                [3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $

                [3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $

                [4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $

                [4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $

                [4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $

                [4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0] , $

                [4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $

                [1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $

                [1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $

                [1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $

                [1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $

                [1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $

                [1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $

                [1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $

                [2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $

                [2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0] , $
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                [2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $

                [2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $

                [3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $

                [3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $

                [3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $

                [4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $

                [4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $

                [4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $

                [4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $

                [4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0]])

n_class  =  2

n_continuous  =  3

model  =  0

icen  =  6

irt  =  5 

lp_max  =  40

itmax  =  0

init_est  =  [-1.25, 0.0, 0.0, 0.0, 0.0, -0.6, 0.0, 0.0]

n_coef  =  SURVIVAL_GLM(n_class, n_continuous, model, x, $

                       Icen = icen, Irt = irt, Itmax = it-
max, $

                       Lp_Max = lp_max, Init_Est = init_est, 
$

                       Coef_Stat = cs, Criterion = crit, $

                       Covariances = cov, Means = means, $

                       Last_Step = ls)

print_results, cs, means, cov, crit, ls

                     Coefficient Satistics

     Coefficient       s.e             z             p

       -1.2500        1.3773       -0.9076        0.3643

        0.0000        0.4288        0.0000        1.0000

        0.0000        0.5299        0.0000        1.0000

        0.0000        0.7748        0.0000        1.0000

        0.0000        0.4051        0.0000        1.0000

       -0.6000        0.1118       -5.3652        0.0000

        0.0000        0.0215        0.0000        1.0000

        0.0000        0.0109        0.0000        1.0000

                      Covariate Means
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    0.35    0.28    0.12    0.53    5.65   56.58   15.65

                          Hessian

  1.8969 -0.0906 -0.1641 -0.1681  0.0778 -0.0818 -0.0235 -0.0012

 -0.0906  0.1839  0.0996  0.1191  0.0358 -0.0005 -0.0008  0.0006

 -0.1641  0.0996  0.2808  0.1264 -0.0226  0.0104  0.0005 -0.0021

 -0.1681  0.1191  0.1264  0.6003  0.0460  0.0193 -0.0016  
0.0007

  0.0778  0.0358 -0.0226  0.0460  0.1641  0.0060 -0.0040  
0.0017

 -0.0818 -0.0005  0.0104  0.0193  0.0060  0.0125  0.0000  
0.0003

 -0.0235 -0.0008  0.0005 -0.0016 -0.0040  0.0000  0.0005 -0.0001

 -0.0012  0.0006 -0.0021  0.0007  0.0017  0.0003 -0.0001  0.0001

Log-Likelihood =     -206.683

                        Newton_Raphson Step

  0.1706 -0.3365  0.1333  1.2967  0.2985  0.0625 -0.0112 -0.0026

Example 4

This example is a continuation of the first example above. Keywords Est_* are 
used in the function SURVIVAL_GLM to compute the parameter estimates. 
The example is taken from Lawless (1982, p. 287) and involves the mortality of 
patients suffering from lung cancer.

PRO print_results, ep

   PRINT, "             Survival and Hazard Estimates"

   PRINT, "  Time       S1          H1         S2          
H2"

   PM, ep, Format = "(F7.2, F10.4, F13.6, F10.4, F13.6)"

END

x  =  TRANSPOSE([ $

                [1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $

                [1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $

                [1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $

                [1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $

                [1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $
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                [1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $

                [1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $

                [2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $

                [2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $

                [2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0] , $

                [2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $

                [2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $

                [2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $

                [2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $

                [3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $

                [3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $

                [4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $

                [4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $

                [4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $

                [4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0] , $

                [4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $

                [1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $

                [1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $

                [1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $

                [1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $

                [1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $

                [1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $

                [1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $

                [2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $

                [2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0] , $

                [2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $

                [2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $

                [3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $

                [3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $

                [3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $

                [4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $

                [4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $

                [4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $

                [4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $

                [4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.]])

n_class  =  2

n_continuous  =  3

model  =  0

icen  =  6

irt   =   5 
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lp_max  =  40

time  =  10.0

npt  =  10

delta  =  20.0

n_coef  =  SURVIVAL_GLM(n_class, n_continuous, model, x, $

                        Icen=icen, Irt=irt, $

                        Lp_Max=lp_max, N_Class_Vals=nvc, $

                        Class_Vals=cv, Coef_Stat=cs, $

                        Criterion=crit, Means=means, $

                        Case_Analysis=ca, Obs_Status=os, $

                        Iterations=iter, Est_Nobs=2, $

                        Est_Time=time, Est_Npt=npt, $

                        Est_Delta=delta, Est_Prob=ep, $

                        Est_Xbeta=xb)

print_results, ep

             Survival and Hazard Estimates

  Time       S1          H1         S2          H2

  10.00    0.9626     0.003807    0.9370     0.006503

  30.00    0.8921     0.003807    0.8228     0.006503

  50.00    0.8267     0.003807    0.7224     0.006503

  70.00    0.7661     0.003807    0.6343     0.006503

  90.00    0.7099     0.003807    0.5570     0.006503

 110.00    0.6579     0.003807    0.4890     0.006503

 130.00    0.6096     0.003807    0.4294     0.006503

 150.00    0.5649     0.003807    0.3770     0.006503

 170.00    0.5235     0.003807    0.3310     0.006503

 190.00    0.4852     0.003807    0.2907     0.006503

Warning Errors

STAT_CONVERGENCE_ASSUMED_1 — Too many step halvings. Convergence 
is assumed.

STAT_CONVERGENCE_ASSUMED_2 — Too many step iterations. Conver-
gence is assumed.

STAT_NO_PREDICTED_1 — “estimates(0)” > 1.0. The expected value for the 
log logistic distribution (“model” = 4) does not exist. Predicted values will not 
be calculated.
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STAT_NO_PREDICTED_2 — “estimates(0)” > 1.0. The expected value for the 
log extreme value distribution(“model” = 8) does not exist. Predicted values 
will not be calculated.

STAT_NEG_EIGENVALUE — The Hessian has at least one negative eigenval-
ue. An upper bound on the absolute value of the minimum eigenvalue is # cor-
responding to variable index #.

STAT_INVALID_FAILURE_TIME_4 — “x(#)(“Ilt”= #)” = # and “x(#)
(“Irt”= #)” = #. The censoring interval has length 0.0. The censoring code for 
this observation is being set to 0.0.

Fatal Error

STAT_MAX_CLASS_TOO_SMALL — The number of distinct values of the 
classification variables exceeds “Max_Class” = #.

STAT_TOO_FEW_COEF — Init_Est is specified, and “Init_Est” = #. The model 
specified requires # coefficients.

STAT_TOO_FEW_VALID_OBS — “n_observations” = # and “Nmissing” = #. 
“n_observations”(”Nmissing” must be greater than or equal to 2 in order to esti-
mate the coefficients.

STAT_SVGLM_1 — For the exponential model (“model” = 0) with “n_effects” 
= # and no intercept, “n_coef” has been determined to equal 0. With no coeffi-
cients in the model, processing cannot continue.

STAT_INCREASE_LP_MAX — Too many observations are to be deleted from 
the model. Either use a different model or increase the workspace.

STAT_INVALID_DATA_8 — “Class_Vals(#)” = #. The number of distinct 
values for each classification variable must be greater than one.
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NORMALCDF Function 
Evaluates the standard normal (Gaussian) distribution function. Using a key-
word, the inverse of the standard normal (Gaussian) distribution can be 
evaluated.

Usage

result = NORMALCDF(x)

Input Parameters 

x — Expression for which the normal distribution function is to be evaluated.

Returned Value 

result — The probability that a normal random variable takes a value less than 
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the standard normal 
(Gaussian) distribution function. If Inverse is specified, then argument x repre-
sents the probability for which the inverse of the normal distribution function is 
to be evaluated. In this case, x must be in the open interval (0.0, 1.0).

Discussion 

Function NORMALCDF evaluates the distribution function, Φ, of a standard 
normal (Gaussian) random variable; that is,

The value of the distribution function at the point x is the probability that the 
random variable takes a value less than or equal to x.

The standard normal distribution (for which NORMALCDF is the distribution 
function) has mean of zero and variance of 1. The probability that a normal ran-

Φ x( )
1

2π
---------- e t– 2 2⁄ td

∞–

x

∫=
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dom variable with mean µ and variance σ2 is less than y is given by 
NORMALCDF evaluated at (y – µ) / σ.

The function Φ(x) is evaluated by use of the complementary error function, 
ERFC. The relationship follows below. 

 

If the keyword Inverse is specified, the NORMALCDF function evaluates the 
inverse of the distribution function, Φ, of a standard normal (Gaussian) random 
variable; that is, 

NORMALCDF (x, /Inverse) = Φ–1 (x)  where 

The value of the distribution function at the point x is the probability that the 
random variable takes a value less than or equal to x. The standard normal dis-
tribution has a mean of zero and a variance of 1.

The NORMALCDF function is evaluated by use of minimax rational-function 
approximations for the inverse of the error function. General descriptions of 
these approximations are given in Hart et al. (1968) and Strecok (1968). The 
rational functions used in NORMALCDF are described by Kinnucan and Kuki 
(1968).

Example 

Suppose X is a normal random variable with mean 100 and variance 225. This 
example finds the probability that X is less than 90 and the probability that X is 
between 105 and 110.

x1 = (90-100)/15.

p = NORMALCDF(x1)

PM, p, Title = $

’The probability that X is less than 90 is:’

The probability that X is less than 90 

is: 0.252493

x1 = (105 - 100)/15.

x2 = (110 - 100)/15.

p = NORMALCDF(x2) - NORMALCDF(x1)

PM, p, Title = $

Φ x( ) ERFC x 2.0⁄–( ) 2.⁄( )=

Φ x( )
1

2π
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’The probability that X is between 105 and ’, $

’110 is:’

The probability that X is between 105 and 110

is: 0.116949

BINORMALCDF Function 
Evaluates the bivariate normal distribution function.

Usage

result = BINORMALCDF(x, y, rho)

Input Parameters

x — The x-coordinate of the point for which the bivariate normal distribution 
function is to be evaluated.

y — The y-coordinate of the point for which the bivariate normal distribution 
function is to be evaluated.

rho — Correlation coefficient.

Returned Value

result — The probability that a bivariate normal random variable with correla-
tion rho takes a value less than or equal to x and less than or equal to y.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function BINORMALCDF evaluates the distribution function F of a bivariate 
normal distribution with means of zero, variances of 1, and correlation of rho; 
that is, ρ = rho and |ρ| < 1.

F x y,( ) 1

2π 1 ρ2–
------------------------- exp

u2 2ρuv– v2+
2 1 ρ2–( )

-----------------------------------– 
  u vdd

∞–

y

∫∞–

x

∫=
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To determine the probability that U ≤ u0 and V ≤ v0, where (U, V) is a bivariate 
normal random variable with mean µ = (µU, µV) and the following variance-
covariance matrix:

transform (U, V)T to a vector with zero means and unit variances. The input to 
BINORMALCDF would be as follows:

, , and 

The BINORMALCDF function uses the method of Owen (1962, 1965). For 
|ρ| = 1, the distribution function is computed based on the univariate statistic 
Z = min(x, y) and on the normal distribution NORMALCDF.

Example

Suppose (x, y) is a bivariate normal random variable with mean (0, 0) and the 
following variance-covariance matrix: 

This example finds the probability that x is less than –2.0 and y is less than 0.0.

x = -2 

y = 0

rho = .9

; Define x, y, and rho.

p = BINORMALCDF(x, y, rho)

; Call BINORMALCDF and output the results.

PM, ’P((x < -2.0) and (y < 0.0)) = ’, p, $

Format = ’(a29, f8.4)’

P((x < -2.0) and (y < 0.0)) = 0.0228

∑ σU
2 σUV

σUV σV
2

=

X
u0 µU–( )

σU

----------------------= Y
v0 µV–( )

σV

---------------------= ρ
σUV

σUσV( )
-----------------=

1.0 0.9

0.9 1.0
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CHISQCDF Function 
Evaluates the chi-squared distribution or noncentral chi-squared distribution. 
Using a keyword the inverse of these distributions can be computed.

Usage

result = CHISQCDF(chisq, df [, delta])

Input Parameters

chisq — Expression for which the chi-squared distribution function is to be 
evaluated. If keyword Inverse is specified, the probability for which the inverse 
of the noncentral, chi-squared distribution function is to be evaluated, the 
parameter chisq must be in the open interval (0.0, 1.0). 

df — Number of degrees of freedom of the chi-squared distribution. Argument 
df must be greater than or equal to 0.5. 

delta — (Optional) The noncentrality parameter.  delta must be nonnegative, 
and delta + df must be less than or equal to 200,000.

Returned Value

result — The probability that a chi-squared random variable takes a value less 
than or equal to chisq.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the chi-squared dis-
tribution function. If inverse is specified, then argument chisq represents the 
probability for which the inverse of the chi-squared distribution function is to be 
evaluated. Parameter chisq must be in the open interval (0.0, 1.0).
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Discussion 

If Two Input Arguments Are Used 

Function CHISQCDF evaluates the distribution function, F, of a chi-squared 
random variable with ν = df. Then, 

where Γ(·) is the gamma function. The value of the distribution function at the 
point x is the probability that the random variable takes a value less than or 
equal to x.

For ν > 65, CHISQCDF uses the Wilson-Hilferty approximation (Abramowitz 
and Stegun 1964, Equation 26.4.17) to the normal distribution, and NORMAL-
CDF function is used to evaluate the normal distribution function.

For ν ≤ 65, CHISQCDF uses series expansions to evaluate the distribution func-
tion. If x < max(ν / 2, 26), CHISQCDF uses the series 6.5.29 in Abramowitz 
and Stegun (1964); otherwise, it uses the asymptotic expansion 6.5.32 in 
Abramowitz and Stegun.

If Inverse is specified, the CHISQCDF function evaluates the inverse distribu-
tion function of a chi-squared random variable with ν = df and with probability 
p. That is, it determines x, such that 

where Γ(·) is the gamma function. The probability that the random variable 
takes a value less than or equal to x is p.

For ν < 40, CHISQCDF uses bisection (if ν ≤ 2 or p > 0.98) or regula falsi to 
find the expression for which the chi-squared distribution function is equal to p. 

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and 
Stegun 1964, Equation 26.4.18) to the normal distribution is used. The NOR-
MALCDF function is used to evaluate the inverse of the normal distribution 
function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramow-
itz and Stegun 1964, Equation 26.4.17) is used. 

F x( ) 1

2ν 2⁄ Γ ν 2⁄( )
--------------------------- e t 2⁄– tν 2⁄ 1– dt

0

x

∫=

p
1

2ν 2⁄ Γ ν 2⁄( )
--------------------------- e t 2⁄– tν 2⁄ 1– dt

0

x

∫=
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If Three Input Arguments Are Used 

Function CHISQCDF evaluates the distribution function of a noncentral chi-
squared random variable with df degrees of freedom and noncentrality parame-
ter delta, that is, with v = df, λ = delta, and x = chisq,

where Γ(⋅) is the gamma function. This is a series of central chi-squared distri-
bution functions with Poisson weights. The value of the distribution function at 
the point x is the probability that the random variable takes a value less than or 
equal to x. 

The noncentral chi-squared random variable can be defined by the distribution 
function above, or alternatively and equivalently, as the sum of squares of inde-
pendent normal random variables. If Yi have independent normal distributions 
with means µi and variances equal to one and

then X has a noncentral chi-squared distribution with n degrees of freedom and 
noncentrality parameter equal to

With a noncentrality parameter of zero, the noncentral chi-squared distribution 
is the same as the chi-squared distribution. 

Function CHISQCDF determines the point at which the Poisson weight is great-
est, and then sums forward and backward from that point, terminating when the 
additional terms are sufficiently small or when a maximum of 1000 terms have 
been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun 
(1964) is used to speed the evaluation of the central chi-squared distribution 
functions.

If Inverse is specified, CHISQCDF evaluates the inverse distribution function of 
a noncentral chi-squared random variable with df degrees of freedom and non-
centrality parameter delta; that is, with P = chisq, v = df, and λ = delta, it 
determines c0 (= CHISQCDF(chisq, df, delta)), such that
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where Γ(⋅) is the gamma function. The probability that the random variable 
takes a value less than or equal to c0 is P.

Example

Suppose X is a chi-squared random variable with two degrees of freedom. This 
example finds the probability that X is less than 0.15 and the probability that X 
is greater than 3.0.

df = 2

chisq = .15

p = CHISQCDF(chisq, df)

PM, p, Title = $

’The probability that chi-squared ’ + $

’with 2 df is less than .15 is:’ 

The probability that chi-squared with 2 df is 

less than .15 is: 0.0722565

df = 2

chisq = 3

p = 1 - CHISQCDF(chisq, df)

PM, p, Title = $

’The probability that chi-squared ’ + $

’with 2 df is greater than 3 is:’

The probability that chi-squared with 2 df 

is greater than 3 is: 0.223130

Informational Errors

STAT_ARG_LESS_THAN_ZERO — Input parameter, chisq, is less than zero.

STAT_UNABLE_TO_BRACKET_VALUE — Bounds that enclose p could not be 
found. An approximation for CHISQCDF is returned.

STAT_CHI_2_INV_CDF_CONVERGENCE — Value of the inverse chi-squared 
could not be found within a specified number of iterations. An approximation 
for CHISQCDF is returned.



486  Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

Alert Errors

STAT_NORMAL_UNDERFLOW — Using the normal distribution for large 
degrees of freedom, underflow would have occurred.
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FCDF Function 
Evaluates the F distribution function. Using a keyword, the inverse of the F dis-
tribution function can be evaluated.

Usage

result = FCDF(f, dfnum, dfden)

Input Parameters

f — Expression for which the F distribution function is to be evaluated.

dfnum — Numerator degrees of freedom. Parameter dfnum must be positive.

dfden — Denominator degrees of freedom. Parameter dfden must be positive.

Returned Value

result — The probability that an F random variable takes a value less than or 
equal to the input point f.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the F distribution 
function. If inverse is specified, argument f represents the probability for which 
the inverse of the F distribution function is to be evaluated. In this case, f must 
be in the open interval (0.0, 1.0).

Discussion

Function FCDF evaluates the distribution function of a Snedecor’s F random 
variable with dfnum and dfden. The function is evaluated by making a transfor-
mation to a beta random variable and then evaluating the incomplete beta 
function. If X is an F variate with ν1 and ν2 degrees of freedom and Y = (ν1X) / 
(ν2 + ν1X), then Y is a beta variate with parameters p = ν1 / 2 and q = ν2 / 2. 
The FCDF function also uses a relationship between F random variables that 
can be expressed as follows: FF(f, ν1, ν2) = 1 – FF(1 / f, ν2, ν1), where FF is the 
distribution function for an F random variable.
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If the keyword Inverse is specified, the FCDF function evaluates the inverse 
distribution function of a Snedecor’s F random variable with ν1 = dfnum numer-
ator degrees of freedom and ν2 = dfden  denominator degrees of freedom. The 
function is evaluated by making a transformation to a beta random variable and 
then evaluating the inverse of an incomplete beta function. 

Example

This example finds the probability that an F random variable with one numera-
tor and one denominator degree of freedom is greater than 648.

f = 648

p = 1 - FCDF(f, 1, 1)

PM, p, Title = $

’The probability that an F(1,1) ’ + $

’variate is greater than 648 is:’

The probability that an F(1,1) variate is 

greater than 648 is: 0.0249959

Fatal Errors

STAT_F_INVERSE_OVERFLOW — Function FCDF is set to machine infinity 
since overflow would occur upon modifying the inverse value for the F distri-
bution with the result obtained from the inverse beta distribution.
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TCDF Function 
Evaluates the Student’s t distribution or noncentral Student’s t distribution. 
Using a keyword the inverse of these distributions can be computed.

Usage

result = TCDF(chisq, df [, delta])

Input Parameters

t — Argument for which the Student’s t distribution function is to be evaluated. 
If Inverse is specified, argument t represents the probability for which the 
inverse of the Student’s t distribution function is to be evaluated. In this case, t 
must be in the open interval (0.0, 1.0).

df — Degrees of freedom. Argument df must be greater than or equal to 1.0.

delta — (Optional) The noncentrality parameter.

Returned Value

result — The probability that a Student’s t random variable takes a value less 
than or equal to the input t.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the Student’s t distri-
bution function. If Inverse is specified, argument t represents the probability for 
which the inverse of the Student’s t distribution function is to be evaluated. In 
this case, t must be in the open interval (0.0, 1.0).

Discussion

If Two Input Arguments Are Used

Function TCDF evaluates the distribution function of a Student’s t random vari-
able with ν = df degrees of freedom. If t2 ≥ ν, the relationship of a t to an F 
random variable (and subsequently, to a beta random variable) is exploited, and 
percentage points from a beta distribution are used. Otherwise, the method 
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described by Hill (1970) is used. If ν is not an integer or if ν is greater than 19, 
a Cornish-Fisher expansion is used to evaluate the distribution function. If ν is 
less than 20 and |t| is less than 2.0, a trigonometric series (see Abramowitz and 
Stegun 1964, Equations 26.7.3 and 26.7.4, with some rearrangement) is used. 
For the remaining cases, a series given by Hill (1970) that converges well for 
large values of t is used.

If keyword Inverse is specified, the TCDF function evaluates the inverse distri-
bution function of a Student’s t random variable with ν = df degrees of freedom. 
If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is between 1 
and 2, the relationship of a t to a beta random variable is exploited, and the 
inverse of the beta distribution is used to evaluate the inverse. Otherwise, the 
algorithm of Hill (1970) is used. For small values of ν greater than 2, Hill’s 
algorithm inverts an integrated expansion in 1 / (1 + t2 / ν) of the t density. For 
larger values, an asymptotic inverse Cornish-Fisher type expansion about nor-
mal deviates is used.

If Three Input Arguments Are Used 

Function TCDF evaluates the distribution function F of a noncentral t random 
variable with df degrees of freedom and noncentrality parameter delta; that is, 
with v = df, δ = delta , and t0 = t,

where Γ(⋅) is the gamma function. The value of the distribution function at the 
point t0 is the probability that the random variable takes a value less than or 
equal to t0.

The noncentral t random variable can be defined by the distribution function 
above, or alternatively and equivalently, as the ratio of a normal random vari-
able and an independent chi-squared random variable. If w has a normal 
distribution with mean δ and variance equal to one, u has an independent chi-
squared distribution with v degrees of freedom, and

then x has a noncentral t distribution with degrees of freedom and noncentrality 
parameter δ.
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The distribution function of the noncentral t can also be expressed as a double 
integral involving a normal density function (see, for example, Owen 1962, 
page 108). The function TNDF uses the method of Owen (1962, 1965), which 
uses repeated integration by parts on that alternate expression for the distribu-
tion function.

If Inverse is specified TCDF evaluates the inverse distribution function of a 
noncentral t random variable with df degrees of freedom and noncentrality 
parameter delta; that is, with P = t, v = df, and δ = delta, it determines 
t0 (= TCDF(t, df, delta )), such that

where Γ(⋅) is the gamma function. The probability that the random variable 
takes a value less than or equal to t0 is P.

Example

This example finds the probability that a t random variable with six degrees of 
freedom is greater in absolute value than 2.447. Argument t is symmetric about 
zero.

p = 2 * TCDF(-2.447, 6)

PM, ’Pr(|t(6)| > 2.447) = ’, p, $

Format = ’(a21, f7.4)’

Pr(|t(6)| > 2.447) =  0.0500

Informational Errors

STAT_OVERFLOW — Function TCDF is set to machine infinity since overflow 
would occur upon modifying the inverse value for the F distribution with the 
result obtained from the inverse beta distribution.



492  Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

GAMMACDF Function 
Evaluates the gamma distribution function.

Usage

result = GAMMACDF(x, a)

Input Parameters 

x — Argument for which the gamma distribution function is to be evaluated.

a — Shape parameter of the gamma distribution. This parameter must be 
positive.

Returned Value

result — The probability that a gamma random variable takes a value less than 
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function GAMMACDF evaluates the distribution function, F, of a gamma ran-
dom variable with shape parameter a; that is, 

where Γ(·) is the gamma function. (The gamma function is the integral from 0 
to infinity of the same integrand as above.) The value of the distribution func-
tion at the point x is the probability that the random variable takes a value less 
than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a 
scale parameter b (which must be positive) or even as a three-parameter distri-

F x( )
1

Γ a( )
---------- e

t–
t

a 1–
td

0

x

∫=
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bution in which the third parameter c is a location parameter. In the most 
general case, the probability density function over (c, infinity) is as follows: 

If T is such a random variable with parameters a, b, and c, the probability that T 
≤ t0 can be obtained from GAMMACDF by setting 
x = (t0 – c ) / b.

If x is less than a or if x is less than or equal to 1.0, GAMMACDF uses a series 
expansion; otherwise, a continued fraction expansion is used. (See Abramowitz 
and Stegun, 1964.)

Example

Let X be a gamma random variable with a shape parameter of 4. (In this case, it 
has an Erlang distribution, since the shape parameter is an integer.) This exam-
ple finds the probability that X is less than 0.5 and the probability that X is 
between 0.5 and 1.0.

a = 4

x = .5

p = GAMMACDF(x, a)

PM, p, Title = $

’The probability that X is less ’ + $

’than .5 is:’

The probability that X is less than .5 is: 

0.00175162

x = 1

p = GAMMACDF(x, a) - p

PM, p, Title = $

’The probability that X is ’ + ’between .5 and 1 is:’

The probability that X is between .5 and 1 

is: 0.0172365

Informational Errors

STAT_LESS_THAN_ZERO — Input argument, x, is less than zero.

f t( )
1

baΓ a( )
----------------e t c–( ) b⁄– x c–( )a 1–=
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Fatal Errors

STAT_X_AND_A_TOO_LARGE — Function overflows because x and a are too 
large.
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BETACDF Function 
Evaluates the beta probability distribution function.

Usage

result = BETACDF(x, pin, qin)

Input Paramters

x — Argument for which the beta probability distribution function is to be eval-
uated. If Inverse is specified, argument x represents the probability for which 
the inverse of the Beta distribution function is to be evaluated. In this case, x 
must be in the open interval (0.0, 1.0).

pin — First beta distribution parameter. Parameter pin must be positive.

qin — Second beta distribution parameter. Parameter qin must be positive.

Returned Value

result — The probability that a beta random variable takes on a value less than 
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the Beta distribution 
function. If Inverse is specified, argument x represents the probability for which 
the inverse of the Beta distribution function is to be evaluated. In this case, x 
must be in the open interval (0.0, 1.0).

Discussion

Function BETACDF evaluates the distribution function of a beta random vari-
able with parameters pin and qin. This function is sometimes called the 
incomplete beta ratio and is denoted by Ix(p, q), where p = pin and q = qin. It is 
given by

Ix p q,( ) Γ p )Γ q )((
Γ p q )+(

------------------------- t
0

x

∫
p 1–

1 t )–( q 1–
dt=
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where Γ(·) is the gamma function. The value of the distribution function by 
Ix(p, q) is the probability that the random variable takes a value less than or 
equal to x.

The integral in the expression above is called the incomplete beta function and 
is denoted by βx(p, q). The constant in the expression is the reciprocal of the 
beta function (the incomplete function evaluated at 1) and is denoted by βx(p, 
q).

If the keyword Inverse is specified, the BETACDF function evaluates the 
inverse distribution function of a beta random variable with parameters pin and 
qin. With P = x, p = pin and q = qin, it returns x such that

where Γ(·) is the gamma function. The probability that the random variable 
takes a value less than or equal to x is P.

The BETCDF function uses the method of Bosten and Battiste (1974).

Example

Suppose X is a beta random variable with parameters 12 and 12 (X has a sym-
metric distribution). This example finds the probability that X is less than 0.6 
and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta 
random variable, the probability that it is less than 0.5 is 0.5.)

p = BETACDF(.6, 12, 12)

; Call BETACDF to compute the first probability and output the results.

PM, p, Title = $

’The probability that X is less than ’ + $

’0.6 is:’, Format= ’(f8.4)’ 

The probability that X is less than 0.6 is: 

0.8364

p = p - BETACDF(.5, 12, 12)

; Call BETACDF and use the previously computed 
; probability to determine the next probability.

PM, p, Format = ’(f8.4)’, $

title = ’The  probability that X ’ + $

’is between 0.5 and 0.6 is:’

The probability that X is between 0.5 and 0.6 

is: 0.3364

P
Γ p )Γ q )((
Γ p q )+(

------------------------- t
0

x

∫
p 1–

1 t )–( q 1– dt=
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BINOMIALCDF Function 
Evaluates the binomial distribution function.

Usage

result = BINOMIALCDF(k, n, p)

Input Parameters

k — Argument for which the binomial distribution function is to be evaluated.

n — Number of Bernoulli trials.

p — Probability of success on each trial.

Returned Value

result — The probability that k or fewer successes occur in n independent Ber-
noulli trials, each of which has a probability p of success.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function BINOMIALCDF evaluates the distribution function of a binomial ran-
dom variable with parameters n and p by summing probabilities of the random 
variable taking on the specific values in its range. These probabilities are com-
puted by the following recursive relationship: 

To avoid the possibility of underflow, the probabilities are computed forward 
from 0 if k is not greater than n times p; otherwise, they are computed back-
ward from n. The smallest positive machine number, ε, is used as the starting 
value for summing the probabilities, which are rescaled by (1 – p)nε if forward 
computation is performed and by pnε if backward computation is done.

Pr X j=( ) n 1 j–+( )p
j 1 p–( )

----------------------------Pr X j 1–=( )=
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For the special case of p = 0, BINOMIALCDF is set to 1; for the case p = 1, 
BINOMIALCDF is set to 1 if k = n and is set to zero otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. This example 
finds the probability that X is less than or equal to 3. 

p = BINOMIALCDF(3, 5, .95)

PM, ’Pr(x < 3) = ’, p, $

Format = ’(a12, f7.4)’

Pr(x < 3) =  0.0226

Informational Errors

STAT_LESS_THAN_ZERO — Input parameter, k, is less than zero.

STAT_GREATER_THAN_N — Input parameter, k, is greater than the number of 
Bernoulli trials, n. 

BINOMIALPDF Function
Evaluates the binomial probability function. 

Usage

result = BINOMIALPDF (k, n, p)

Input Parameters

k — Argument for which the binomial probability function is to be evaluated.

n — Number of Bernoulli trials.

p — Probability of success on each trial.

Returned Value

result — The probability that a binomial random variable takes a value equal to 
k.
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Discussion

The function BINOMIALPDF evaluates the probability that a binomial random 
variable with parameters n and p takes on the value k. It does this by computing 
probabilities of the random variable taking on the values in its range less than 
(or the values greater than) k. These probabilities are computed by the recur-
sive relationship

To avoid the possibility of underflow, the probabilities are computed forward 
from 0, if k is not greater than n times p, and are computed backward from n, 
otherwise. The smallest positive machine number, ε, is used as the starting value 
for computing the probabilities, which are rescaled by (1 − p)nε if forward 
computation is performed and by pnε if backward computation is done.

For the special case of p = 0, BINOMIALPDF returns  0 if k is greater than 0 
and to 1 otherwise; and for the case p = 1, BINOMIALPDF returns 0 if k is less 
than n and to 1 otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this 
example, we find the probability that X is equal to 3. 

PRINT, BINOMIALPDF(3, 5, .95)

0.0214344

Pr( Pr(X j
n j p

j p
X j= = + −

−
= −)
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HYPERGEOCDF Function 
Evaluates the hypergeometric distribution function.

Usage

result = HYPERGEOCDF(k, n, m, l)

Input Parameters

k — Parameter for which the hypergeometric distribution function is to be 
evaluated.

n — Sample size. Argument n must be greater than or equal to k.

m — Number of defectives in the lot.

l — Lot size. Parameter l must be greater than or equal to n and m.

Returned Value

result — The probability that k or fewer defectives occur in a sample of size n 
drawn from a lot of size l that contains m defectives.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function HYPERGEOCDF evaluates the distribution function of a hypergeo-
metric random variable with parameters n, l, and m. The hypergeometric 
random variable X can be thought of as the number of items of a given type in a 
random sample of size n that is drawn without replacement from a population 
of size l containing m items of this type. 

The probability function is 

Pr x j=( )

m
j 

  l m–
n j– 

 

l
n 

 
---------------------------= for j i i 1 … min n m,( ), ,+,=



HYPERGEOCDF Function  501

where i = max(0, n – l + m). 

If k is greater than or equal to i and less than or equal to min(n, m), BINOMI-
ALCDF sums the terms in this expression for j going from i up to k; otherwise, 
0 or 1 is returned, as appropriate. To avoid rounding in the accumulation, 
BINOMIALCDF performs the summation differently, depending on whether or 
not k is greater than the mode of the distribution, which is the greatest integer in 
(m + 1) (n + 1) / (l + 2).

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, the distribution function is evaluated at 7.

p = HYPERGEOCDF(7, 100, 70, 1000)

PM, ’Pr(x <= 7) = ’, p, $

Format = ’(a13,f7.4)’

Pr(x <= 7) =  0.5995

Informational Errors

STAT_LESS_THAN_ZERO — Input parameter, k, is less than zero.

STAT_K_GREATER_THAN_N — Input parameter, k, is greater than the sam-
ple size.

Fatal Errors

STAT_LOT_SIZE_TOO_SMALL — Lot size must be greater than or equal to n 
and m.
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POISSONCDF Function 
Evaluates the Poisson distribution function.

Usage

result = POISSONCDF(k, theta)

Input Parameters

k — Parameter for which the Poisson distribution function is to be evaluated.

theta — Mean of the Poisson distribution. Parameter theta must be positive.

Returned Value

result — The probability that a Poisson random variable takes a value less than 
or equal to k.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function POISSONCDF evaluates the distribution function of a Poisson random 
variable with parameter theta. The mean of the Poisson random variable, theta, 
must be positive. 

The probability function (with θ = theta) is as follows:

  

The individual terms are calculated from the tails of the distribution to the mode 
of the distribution and summed. The POISSONCDF function uses the recursive 
relationship 

,      

with .

f x( ) e θ– θx( ) x!⁄= for x 0 1 2 …, , ,=

f x 1+( ) f x( ) θ x 1+( )⁄( )= for x 0 1 2 … k 1–, , , ,=

f 0( ) e
θ–=
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Example

Suppose X is a Poisson random variable with θ = 10. This example evaluates 
the probability that X ≤ 7.

p = POISSONCDF(7, 10)

PM, ’Pr(x <= 7) = ’, p, $

Format = ’(a13,f7.4)’

Pr(x <= 7) =  0.2202

Informational Errors

STAT_LESS_THAN_ZERO —  Input parameter, k, is less than zero.
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Random Number Generation

Contents of Chapter

Random Numbers

Retrieves uniform (0, 1) multiplicative, 
congruential pseudorandom-number 
generator ................................. RANDOMOPT Procedure

Sets or retrieves the current table 
used in either the shuffled 
or GFSR random 
number generator. ..............RANDOM_TABLE Procedure

Generates pseudorandom 
numbers............................................  RANDOM Function

Generates pseudorandom 
numbers from a nonhomo-geneous 
Poisson proces ......................... RANDOM_NPP Function

Generates pseudorandom order statistics 
from a uniform (0, 1) distribution, 
or optionally from a standard 
normal distribution ...............RANDOM_ORDER Function

Generates a pseudorandom 
two-way table...................RAND_TABLE_2WAY Function

Generates a pseudorandom orthogonal 
matrix or a 
correlation matrix ................ RAND_ORTH_MAT Function
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Generates a simple pseudorandom 
sample from a 
finite population..................RANDOM_SAMPLE Function

Generates pseudorandom numbers 
from a multivariate distribution 
determined from a 
given sample.....................RAND_FROM_DATA Function

Sets up table to generate 
pseudorandom numbers from 
a general continuous 
distribution................................ CONT_TABLE Procedure

Generates pseudorandom numbers 
from a general continuous 
distribution.......................... RAND_GEN_CONT Function

Sets up table to generate 
pseudorandom numbers from a general 
discrete distribution .................... DISCR_TABLE Function

Generates pseudorandom numbers 
from a general discrete distribution 
using an alias method or optionally a table 
lookup method .................. RAND_GEN_DISCR Function

Stochastic Processes

Generate pseudorandom ARMA 
process numbers .................. RANDOM_ARMA Function

Low-discrepancy sequences

Initializes the structure used for 
computing a shuffled 
Faure sequence ............................ FAURE_INIT Function

Generates a shuffled 
Faure sequence ..................  FAURE_NEXT_PT Function

Introduction

Overview of Random Number Generation

The Random Numbers section describes functions for the generation of random 
numbers that are useful for applications in Monte Carlo or simulation studies. 
Before using any of the random number generators, the generator must be ini-
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tialized by selecting a seed or starting value. The user can do this by calling the 
function RANDOMOPT. If the user does not select a seed, one is generated 
using the system clock. A seed needs to be selected only once in a program, 
unless two or more separate streams of random numbers are maintained. Utility 
functions in this chapter can be used to select the form of the basic generator to 
restart simulations and to maintain separate simulation streams.

In the following discussions, the phrases “random numbers,” “random devi-
ates,” “deviates,” and “variates” are used interchangeably. The phrase 
“pseudorandom” is sometimes used to emphasize that the numbers generated 
are really not “random” since they result from a deterministic process. The use-
fulness of pseudorandom numbers is derived from the similarity, in a statistical 
sense, of samples of the pseudorandom numbers to samples of observations 
from the specified distributions. In short, while the pseudorandom numbers are 
completely deterministic and repeatable, they simulate the realizations of inde-
pendent and identically distributed random variables.

Basic Uniform Generator

The default action of the RANDOM function is the generation of uniform (0,1) 
numbers. This function is portable in the sense that, given the same seed, it pro-
duces the same sequence in all computer/compiler environments.

The random number generators in this chapter use either a multiplicative con-
gruential method or a generalized feedback shift register (GFSR) method. The 
selection of the type of generator is made by calling the routine RANDOMOPT 
(page 510). If no selection is made explicitly, a multiplicative generator (with 
multiplier 16807) is used. Whatever distribution is being simulated, uniform 
(0, 1) numbers are first generated and then transformed if necessary. These rou-
tines are portable in the sense that, given the same seed and for a given type of 
generator, they produce the same sequence in all computer/compiler environ-
ments. There are many other issues that must be considered in developing 
programs for the methods described below (see Gentle 1981 and 1990).

The Multiplicative Congruential Generators

The form of the multiplicative congruential generators is

xi ≡ cxi-1mod (231 − 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primi-
tive root modulo 231 − 1 (which is a prime), then the generator will have a 
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maximal period of 231 − 2. There are several other considerations, however. See 
Knuth (1981) for a good general discussion. The possible values for c in the 
generators are 16807, 397204094, and 950706376. The selection is made by the 
function RANDOMOPT. The choice of 16807 will result in the fastest execu-
tion time, but other evidence suggests that the performance of 950706376 is 
best among these three choices (Fishman and Moore 1982). If no selection is 
made explicitly, the functions use the multiplier 16807, which has been in use 
for some time (Lewis et al. 1969).

Shuffled Generators

The user also can select a shuffled version of these generators using 
RANDOMOPT. The shuffled generators use a scheme due to Learmonth and 
Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1) 
numbers resulting from the simple multiplicative congruential generator. Then, 
for each xi from the simple generator, the low-order bits of xi are used to select 
a random integer, j, from 1 to 128. The j-th entry in the table is then delivered 
as the random number; and xi, after being scaled into the unit interval, is 
inserted into the j-th position in the table. This scheme is similar to that of 
Bays and Durham (1976), and their analysis is applicable to this scheme as well.

The Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion Xt = Xt-1563 ⊕ Xt-96. This generator, 
which is different from earlier GFSR generators, was proposed by Fushimi 
(1990), who discusses the theory behind the generator and reports on several 
empirical tests of it. Background discussions on this type of generator can be 
found in Kennedy and Gentle (1980), pages 150−162.

Setting the Seed

The seed of the generator can be set and retreived using RANDOMOPT.  Prior 
to invoking any generator in this section, the user can call RANDOMOPT to 
initialize the seed, which is an integer variable with a value between 1 and 
2147483647. If it is not initialized by RANDOMOPT, a random seed is 
obtained from the system clock. Once it is initialized, the seed need not be set 
again.

If the user wants to restart a simulation, RANDOMOPT can be used to obtain 
the final seed value of one run to be used as the starting value in a subsequent 
run. Also, if two simultaneous random number streams are desired in one run, 
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RANDOMOPT can be used before and after the invocations of the generators in 
each stream.

If a shuffled generator or the GFSR generator is used, in addition to resetting 
the seed, the user must also reset some values in a table. For the shuffled gener-
ators, this is done using the routine RANDOM_TABLE.  The tables for the 
shuffled generators are separate for single and double precision; so, if precisions 
are mixed in a program, it is necessary to manage each precision separately for 
the shuffled generators.

Distributions Other than the Uniform

The nonuniform generators use a variety of transformation procedures. All of 
the transformations used are exact (mathematically). The most straightforward 
transformation is the inverse CDF technique, but it is often less efficient than 
others involving acceptance/rejection and mixtures. See Kennedy and Gentle 
(1980) for discussion of these and other techniques.

Many of the nonuniform generators in this chapter use different algorithms 
depending on the values of the parameters of the distributions. This is particu-
larly true of the generators for discrete distributions. Schmeiser (1983) gives an 
overview of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on 
different computers, because of rounding, the nonuniform generators that use 
acceptance/rejection may occasionally produce different sequences on different 
computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if a 
very large number of deviates from a fixed distribution are to be generated, it 
might be worthwhile to consider a table sampling method, as implemented in 
the routines RAND_GEN_CONT and RAND_GEN_DISCR.

Additional Notes on Usage

The generators for continuous distributions are available in both single and dou-
ble precision versions. This is merely for the convenience of the user; the 
double precision versions should not be considered more “accurate,” except 
possibly for the multivariate distributions.
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RANDOMOPT Procedure 
Uses keywords to set or retrieve the random number seed or to select the form 
of the IMSL random number generator.

Usage

RANDOMOPT

Input Parameters

Procedure RANDOMOPT does not have any positional Input Parameters. Key-
words are required for specific actions to be taken.

Input Keywords

Gen_Option — Indicator of the generator. The random-number generator is a 
multiplicative, congruential generator with modulus 231 – 1. Keyword 
Gen_Option is used to choose the multiplier and to determine whether or not 
shuffling is done.

Set — Seed of the random-number generator. The seed must be in the range 
(0, 2147483646). If the seed is zero, a value is computed using the system 
clock; hence, the results of programs using the PV- WAVE:IMSL Statistics ran-
dom-number generators are different at various times.

Gen_Option Generator

1 multiplier 16807 used (default)

2 multiplier 16807 used with shuffling

3 multiplier 397204094 used

4 multiplier 397204094 used with shuffling

5 multiplier 950706376 used

6 multiplier 950706376 used with shuffling

7 GFSR, with the recursion Xt = Xt-1563 ⊕ Xt-96 
is used
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Substream_seed — If present and nonzero, then  a seed for the congruential 
generators that do not do shuffling that will generate random numbers begin-
ning 100,000 numbers farther along will be returned in keyword Get.  If 
keyword Substream_seed is set, then keyword Get is required.

Output Keywords

Get — Named variable into which the value of the current random-number seed 
is stored.

Current_option — Named variable into which the value of the current random-
number generator option is stored.

Discussion 

Procedure RANDOMOPT is designed to allow a user to set certain key ele-
ments of the random-number generator functions.

The uniform pseudorandom-number generators use a multiplicative congruen-
tial method, or a generalized feedback shift register. The choice of  generator is 
determined by keyword Gen_Option. The chapter introduction and the descrip-
tion of function RANDOM may provide some guidance in the choice of the 
form of the generator. If no selection is made explicitly, the generators use the 
multiplier 16807 without shuffling. This form of the generator has been in use 
for some time (Lewis et al. 1969).

Keyword Set is used to initialize the seed used in the PV- WAVE:IMSL Statis-
tics random-number generators. See the chapter introduction for details of the 
various gererator options. The seed can be reinitialized to a clock-dependent 
value by calling RANDOMOPT with Set set to zero.

A common use of keyword Set is in conjunction with the keyword Get to restart 
a simulation. Keyword Get retrieves the current value of the “seed” used in the 
random-number generators. 

If keyword Substream_seed is set, RANDOMOPT  determines another seed, 
such that if one of the IMSL multiplicative congruential generators, using no 
shuffling, went through 100,000 generations starting with Substream_seed, the 
next number in that sequence would be the first number in the sequence that 
begins with the returned seed.

Note that Substream_seed works only when a multiplicative congruential gener-
ator without shuffling is used. This means that either the routine RANDOMOPT 
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has not been called at all or that it has been last called with Gen_Option having 
a value of 1, 3, or 5.

For many of the IMSL generators for nonuniform distributions that do not use 
the inverse CDF method, the distance between the sequences generated starting 
with Substream_seed and starting with the returned seed may be less than 
100,000. This is because the nonuniform generators that use other techniques 
may require more than one uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known dis-
tance apart is for blocking Monte Carlo experiments or for running parallel 
streams.

Example 1

This example illustrates the statements required to restart a simulation using the 
keywords Get and Set. The example shows that restarting the sequence of ran-
dom numbers at the value of the last seed generated is the same as generating 
the random numbers all at once.
seed = 123457

nrandom = 5

RANDOMOPT, Set = seed

; Set the seed using the keyword Set.

r1 = RANDOM(nrandom)

PM, r1, Title = ’First Group of Random Numbers’

First Group of Random Numbers

 0.966220

 0.260711

 0.766262

 0.569337

 0.844829

RANDOMOPT, Get = seed

; Get the current value of the seed using the keyword Get.

RANDOMOPT, Set = seed

; Set the seed. 

r2 = RANDOM(nrandom)

PM, r2, $

Title = ’Second Group of Random Numbers’

Second Group of Random Numbers

 0.0442665

 0.987184

 0.601350
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 0.896375

 0.380854

RANDOMOPT, Set = 123457

; Reset the seed to the original seed.

r3 = RANDOM(2 * nrandom)

PM, r3, Title = ’Both Groups of Random Numbers’

Both Groups of Random Numbers

 0.966220

 0.260711

 0.766262

 0.569337

 0.844829

 0.0442665

 0.987184

 0.601350

 0.896375

 0.380854

Example 2

In this example, RANDOMOPT is used to determine seeds for 4 separate 
streams, each 200,000 numbers apart, for a multiplicative congruential generator 
without shuffling. (Since RANDOMOPT is not invoked to select a generator, 
the multiplier is 16807.) Since the streams are 200,000 numbers apart, each 
seed requires two invocations of RANDOMOPT with keyword Substream_seed.  
All of the streams are non-overlapping, since the period of the underlying gen-
erator is 2,147,483,646.

RANDOMOPT, GEN_OPTION = 1

is1 = 123457;

RANDOMOPT, Get = itmp, Substream_seed = is1

RANDOMOPT, Get = is2, Substream _seed = itmp

RANDOMOPT, Get = itmp, Substream _seed = is2

RANDOMOPT, Get = is3, Substream _seed = itmp

RANDOMOPT, Get = itmp, Substream _seed = is3

RANDOMOPT, Get = is4, Substream _seed = itmp

PRINT, is1, is2, is3, is4

      123457  2016130173    85016329   979156171
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RANDOM_TABLE Procedure
Sets or retrieves the current table used in either the shuffled or GFSR random 
number generator.

Usage
RANDOM_TABLE, table, /Get

RANDOM_TABLE, table, /Set

Input/Output Parameters

table  One dimensional array used in the generators. For the shuffled genera-
tors table is length 128. For the GFSR generator table is length 1565. The 
argument table is input if the keyword Set is used, and output if the keyword 
Get is used.

Input Keywords

Set  If present and nonzero, then the specified table is being set.  

Get  If present and nonzero, then the specified table is being retieved.

Gfsr  If present and nonzero, then the specified GFSR table is being set or 
retrieved.

Double  If present and nonzero, double precision is used. This keyword is 
active only when the shuffled table is being set or retrieved. 

Discussion

The values in table are initialized by the IMSL random number generators. The 
values are all positive except if the user wishes to reinitialize the array, in which 
case the first element of the array is input as a nonpositive value. (Usually, one 
should avoid reinitializing these arrays, but it might be necessary sometimes in 
restarting a simulation.) If the first element of table is set to a nonpositive value 
on the call to RANDOM_TABLE with the keyword Set, on the next invocation 
of a routine to generate random numbers, the appropriate table will be 
reinitialized.

For more details on the shuffled and GFSR generators see the Introduction sec-
tion on page 506 of this chapter.
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Example

In this example, three separate simulation streams are used, each with a differ-
ent form of the generator. Each stream is stopped and restarted. (Although this 
example is obviously an artificial one, there may be reasons for maintaining 
separate streams and stopping and restarting them because of the nature of the 
usage of the random numbers coming from the separate streams.)

nr = 5                          

iseed1 = 123457                 

iseed2 = 123457                 

iseed7 = 123457                 

; Begin first stream, iopt = 1 (by default) 

RANDOMOPT,  Set = iseed1

r = RANDOM(nr)

RANDOMOPT,  Get = iseed1

PM, r, Title = ’First stream output’

First stream output

0.966220

0.260711

0.766262

0.569337

0.844829

PRINT, ’output seed ’, iseed1

output seed   1814256879

; Begin second stream, iopt = 2 

RANDOMOPT,  gen_opt = 2

RANDOMOPT,  Set = iseed2

r = RANDOM(nr)

RANDOMOPT,  Get = iseed2

RANDOM_TABLE, table, /Get

PM, r, Title = ’Second stream output’

Second stream output
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0.709518

0.186145

0.479442

0.603839

0.379015

PRINT, ’output seed ’, iseed2

output seed   1965912801

; Begin third stream, iopt = 7 

RANDOMOPT,  gen_opt = 7

RANDOMOPT,  Set = iseed7

r = RANDOM(nr)

RANDOMOPT,  Get = iseed7

RANDOM_TABLE, itable, /Get, /GFSR

PM, r, Title = ’Third stream output’

Third stream output

0.391352

0.0262676

0.762180

0.0280987

0.899731

PRINT, ’output seed ’, iseed7

output seed   1932158269

; Reinitialize seed and resume first stream 

RANDOMOPT,  gen_opt = 1

RANDOMOPT,  Set = iseed1

r = RANDOM(nr)

RANDOMOPT,  Get = iseed1

pm, r, title = ’First stream output’

First stream output
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0.0442665

0.987184

0.601350

0.896375

0.380854

PRINT, ’output seed ’, iseed1

output seed    817878095

; Reinitialize seed and table for shuffling and

; resume second stream 

RANDOMOPT,  gen_opt = 2

RANDOMOPT,  Set = iseed2

RANDOM_TABLE, table, /Set

r = RANDOM(nr)

RANDOMOPT,  Get = iseed2

PM, r, Title = ’Second stream output’

Second stream output

0.255690

0.478770

0.225802

0.345467

0.581051

PRINT, ’output seed ’, iseed2

output seed   2108806573

; Reinitialize seed and table for GFSR and 

; resume third stream.

RANDOMOPT,  gen_opt = 7

RANDOMOPT,  Set = iseed7

RANDOM_TABLE, itable, /Set, /Gfsr

r = RANDOM(nr)

RANDOMOPT,  Get = iseed7

PM, r, Title = ’Third stream output’

Third stream output
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0.751854

0.508370

0.906986

0.0910035

0.691663

PRINT, ’output seed ’, iseed7

output seed   1485334679

RANDOM Function 
Generates pseudorandom numbers. The default distribution is a uniform (0, 1) 
distribution, but many different distributions can be specified through the use of 
keywords.

Usage

result = RANDOM(n)

Generally, it is best to first identify the desired distribution from the 
“Discussion” section, then refer to the “Input Keywords” section for specific 
usage instructions.

Input Parameters

n — Number of random numbers to generate. 

Returned Value

result — A one-dimensional array of length n containing the random numbers. 
If one of the keywords Sphere, Multinomial,  or Mvar_Normal are used, then a 
two-dimensional array is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

Parameters — Specifies parameters for the distribution used by RANDOM to 
generate numbers. Some distributions require this keyword to execute success-
fully.  The type and range of these parameters depends upon which distribution 
is specified. See the keyword for the desired distribution or the Discussion sec-
tion for more details.



RANDOM Function  519

Beta — If present and nonzero, the random numbers are generated from a beta 
distribution.  Requires the Parameters keyword to specify the parameters (p, q) 
for the distribution. The parameters p and q must be positive.

Binomial — If present and nonzero, the random numbers are generated from a 
binomial distribution. Requires the Parameters keyword to specify the parame-
ters (p, n) for the distribution. The parameter n is the number of Bernoulli trials, 
and it must be greater than zero. The parameter p represents the probability of 
success on each trial, and it must be between 0.0 and 1.0.

Cauchy — If present and nonzero, the random numbers are generated from a 
Cauchy distribution.

Chi_squared — If present and nonzero, the random numbers are generated 
from a chi-squared distribution. Requires the Parameters keyword to specify the 
parameter Df for the distribution. The parameter Df is the number of degrees of 
freedom for the distribution, and it must be positive.

Discrete_unif — If present and nonzero, the random numbers are generated 
from a discrete uniform distribution. Requires the Parameters keyword to spec-
ify the parameter k for the distribution. This generates integers in the range 
from 1 to k (inclusive) with equal probability. The parameter k must be positive.

Exponential — If present and nonzero, the random numbers are generated from 
a standard exponential distribution.

Gamma — If present and nonzero, the random numbers are generated from a 
standard Gamma distribution. Requires the Parameters keyword to specify the 
parameter a for the distribution.  The parameter a is the shape parameter of the 
distribution, and it must be positive n.

Geometric — If present and nonzero, the random numbers are generated from a 
geometric distribution. Requires the Parameters keyword to specify the parame-
ter P for the distribution. The parameter P must be positive and less than 1.0.

Hypergeometric — If present and nonzero, the random numbers are generated 
from a hypergeometric distribution. Requires the Parameters keyword to spec-
ify the parameters (M, N, L) for the distribution. The parameter N represents the 
number of items in the sample, M is the number of special items in the popula-
tion, and L is the total number of items in the population.  The parameters N 
and M must be greater than zero, and L must be greater than both N and M.

Logarithmic — If present and nonzero, the random numbers are generated from 
a logarithmic distribution. Requires the Parameters keyword to specify the 
parameter a for the distribution. The parameter a must be greater than zero.
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Lognormal — If present and nonzero, the random numbers are generated from 
a lognormal distribution. Requires the Parameters keyword to specify the 
parameters (µ, σ) for the distribution. The parameter µ is the mean of the distri-
bution, while σ represents the standard deviation.

Mix_Exponential — If present and nonzero, the random numbers are gener-
ated from a mixture of two exponential distributions. Requires the Parameters 
keyword to specify the parameters (θ1, θ2, p) for the distribution.  The parame-
ters θ1 and θ2 are the means for the two distributions; both must be positive, 
and θ1 must be greater than θ2. The parameter p is the relative probability of the 
θ1 distribution, and it must be non-negative and less than or equal to 
θ1/( θ1- θ2).

Neg_binomial — If present and nonzero, the random numbers are generated 
from a  negative binomial distribution. Requires the Parameters keyword to 
specify the parameters (r, p) for the distribution. The parameter r must be 
greater than zero. If r is an integer, the generated deviates can be thought of as 
the number of failures in a sequence of Bernoulli trials before r successes occur. 
The parameter p is the probability of success on each trial. It must be greater 
than the machine epsilon, and less than 1.0.

Normal — If present and nonzero, the random numbers are generated from a 
standard normal distribution using an inverse CDF method. 

Permutation — If present and nonzero, then generate a pseudorandom 
permutation. 

Poisson — If present and nonzero, the random numbers are generated from a 
Poisson distribution.  Requires the Parameters keyword to specify the parame-
ter θ for the distribution.  The parameter θ represents the mean of the 
distribution, and it must be positive.

Sample_indices— If present and nonzero, generate a simple pseudorandom 
sample of indices. Requires the Parameters keyword to specify the parameter 
npop, the number of items in the population.

Sphere— If present and nonzero, the random numbers are generated on a unit 
circle or K-dimensional sphere. Requires the Parameters keyword to specify the 
parameter k, the dimension of the circle (k = 2) or of the sphere.

Stable — If present and nonzero, the random numbers are generated from a sta-
ble distribution. Requires the Parameters keyword to specify the parameters A 
and bprime  for the stable distribution. A is the characteristic exponent of the 
stable distribution. A must be positive and less than or equal to 2. bprime is 
related to the usual skewness parameter β of the stable distribution.



RANDOM Function  521

Student_t — If present and nonzero, the random numbers are generated from a 
Student’s t distribution. Requires the Parameters keyword to specify the param-
eter Df for the distribution. The Df parameter is the number of degrees of 
freedom for the distribution, and it must be positive.

Triangular — If present and nonzero, the random numbers are generated from 
a triangular distribution.

Uniform — If present and nonzero, the random numbers are generated from a 
uniform (0, 1) distribution. The default action of this returns random numbers 
from a uniform (0, 1) distribution.

Von_mises — If present and nonzero, the random numbers are generated from a 
von Mises distribution. Requires the Parameters keyword to specify the param-
eter c for the function. The parameter c must be greater than one-half the 
machine epsilon.

Weibull — If present and nonzero, the random numbers are generated from a 
Weibull distribution.  Requires the Parameters keyword to specify the parame-
ters (a, b) for the distribution.  The parameter a is the shape parameter, and it is 
required. The parameter b is the scale parameter, and is optional 
(Default: b = 1.0).

Mvar_Normal — If present and nonzero, the random numbers are generated 
from a multivariate normal distribution. Keywords Mvar_Normal and 
Covariances must be specified to return numbers from a multivariate normal 
distribution.

Covariances — Two-dimensional, square matrix containing the variance-covari-
ance matrix. The two-dimensional array returned by RANDOM is of the 
following size:

n by N_ELEMENTS(Covariances(*, 0))

Keywords Mvar_Normal and Covariances must be specified to return numbers 
from a multivariate normal distribution.

Multinomial — If present and nonzero, the random numbers are generated from 
a multinomial distribution. Requires the Parameters keyword to specify the 
parameter (ntrials) for the distribution, and the keyword Probabilities to spec-
ify the array containing the probabilities of the possible outcomes. The value if 
ntrials is the multinomial parameter indicating the number of independent trials.

Probabilities — Specifies the array containing the probabilities of the possible 
outcomes. The elements of P must be positive and must sum to 1.0.
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Keywords Multinomial and Probabilities must be specified to return numbers 
from a Multinomial distribution.

NOTE  The keywords A, Pin, Qin, and Theta are still supported, but are now 
deprecated.  Please use the Parameters keyword instead.

Discussion

Function RANDOM is designed to return random numbers from any of a num-
ber of different distributions. The determination of which distribution to 
generate the random numbers from is based on the presence of a keyword or 
groups of keywords. If RANDOM is called without any keywords, then ran-
dom numbers from a uniform (0, 1) distribution are returned.

Uniform (0,1) Distribution

The default action of RANDOM generates pseudorandom numbers from a uni-
form (0, 1) distribution using a multiplicative, congruential method. The form 
of the generator follows:

xi ≡ cxi - 1mod (231 – 1) 

Each xi is then scaled into the unit interval (0, 1). The possible values for c in 
the generators are 16807, 397204094, and 950706376. The selection is made by 
using the RANDOMOPT procedure with the Gen_Option keyword. The choice 
of 16807 results in the fastest execution time. If no selection is made explicitly, 
the functions use the multiplier 16807. See RANDOMOPT on page 510 for 
futher discussion of generator options.

The RANDOMOPT procedure called with the Set keyword is used to initialize 
the seed of the random-number generator.

The user can select a shuffled version of these generators. In this scheme, a 
table is filled with the first 128 uniform (0, 1) numbers resulting from the sim-
ple multiplicative congruential generator. Then, for each xi from the simple 
generator, the low-order bits of xi are used to select a random integer, j, from 1 
to 128. The j-th entry in the table is then delivered as the random number, and 
xi, after being scaled into the unit interval, is inserted into the j-th position in 
the table.

The values returned are positive and less than 1.0. Some values returned may be 
smaller than the smallest relative spacing; however, it may be the case that 
some value, for example r(i), is such that 1.0 – r(i) = 1.0.
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Deviates from the distribution with uniform density over the interval (a, b) can 
be obtained by scaling the output. See Example 3 on page 535 for more details.

Normal Distribution

Calling RANDOM with keyword Normal generates pseudorandom numbers 
from a standard normal (Gaussian) distribution using an inverse CDF tech-
nique. In this method, a uniform (0,1) random deviate is generated. Then, the 
inverse of the normal distribution function is evaluated at that point using the 
NORMALCDF function with keyword Inverse.

If the Parameters keyword is specified in addition to Normal, RANDOM gener-
ates pseudorandom numbers using an acceptance/rejection technique due to 
Kinderman and Ramage (1976). In this method, the normal density is repre-
sented as a mixture of densities over which a variety of acceptance/rejection 
methods due to Marsaglia (1964), Marsaglia and Bray (1964), and Marsaglia et 
al. (1964) are applied. This method is faster than the inverse CDF technique.

Deviates from the normal distribution with mean specific mean and standard 
deviation can be obtained by scaling the output from RANDOM. See Example 
3 on page 535 for more details. 

Exponential Distribution

Calling RANDOM with keyword Exponential generates pseudorandom numbers 
from a standard exponential distribution. The probability density function is 
f(x) = e–x, for x > 0. Function RANDOM uses an antithetic inverse CDF tech-
nique. In other words, a uniform random deviate U is generated, and the inverse 
of the exponential cumulative distribution function is evaluated at 1.0 – U to 
yield the exponential deviate.

Poisson Distribution

Calling RANDOM with keywords Poisson and Parameters= θ generates pseu-
dorandom numbers from a Poisson distribution with positive mean θ. The 
probability function follows:

, for 

If θ is less than 15, RANDOM uses an inverse CDF method; otherwise, the 
PTPE method of Schmeiser and Kachitvichyanukul (1981) is used. (See also 
Schmeiser 1983.) The PTPE method uses a composition of four regions, a trian-
gle, a parallelogram, and two negative exponentials. In each region except the 

f x( ) e θ– θx( ) x!⁄= x 0 1 2 …, , ,=
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triangle, acceptance/rejection is used. The execution time of the method is 
essentially insensitive to the mean of the Poisson.

Gamma Distribution

Calling RANDOM with keywords Gamma and Parameters=a generates pseudo-
random numbers from a Gamma distribution with shape parameter a and unit 
scale parameter. The probability density function follows:

Various computational algorithms are used depending on the value of the shape 
parameter a. For the special case of a = 0.5, squared and halved normal devi-
ates are used; for the special case of a = 1.0, exponential deviates are generated. 
Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens, 
described in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a 10-
region rejection procedure developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard Gamma distribution with the shape param-
eter having a value equal to a positive integer; hence, RANDOM generates 
pseudorandom deviates from an Erlang distribution with no modifications 
required.

Beta Distribution

Calling RANDOM with keywords Beta, and Parameters=[p,q] generates pseu-
dorandom numbers from a beta distribution. With p and q both positive, the 
probability density function is 

where Γ(·) is the Gamma function.

The algorithm used depends on the values of p and q. Except for the trivial 
cases of p = 1 or q = 1, in which the inverse CDF method is used, all the meth-
ods use acceptance/rejection. If p and q are both less than 1, the method of 
Jöhnk (1964) is used. If either p or q is less than 1 and the other is greater than 
1, the method of Atkinson (1979) is used. If both p and q are greater than 1, 
algorithm BB of Cheng (1978), which requires very little setup time, is used if x 
is less than 4, and algorithm B4PE of Schmeiser and Babu (1980) is used if x is 
greater than or equal to 4. Note that for p and q both greater than 1, calling 

f x( )
1

Γ a( )
----------xa 1– e x–= for x 0≥

f x( )
Γ p q+( )
Γ p( )Γ q( )
---------------------xp 1– 1 x–( )q 1–=
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RANDOM to generate random numbers from a beta distribution a loop getting 
less than four variates on each call yields the same set of deviates as executing 
one call and getting all the deviates at once.

The values returned are less than 1.0 and greater than ε, where ε is the smallest 
positive number such that 1.0 – ε is less than 1.0.

Multivariate Normal Distribution

Calling RANDOM with keywords Mvar_Normal and Covariances generates 
pseudorandom numbers from a multivariate normal distribution with mean vec-
tor consisting of all zeros and variance-covariance matrix defined using 
keyword Covariances. First, the Cholesky factor of the variance-covariance 
matrix is computed. Then, independent random normal deviates with mean zero 
and variance 1 are generated, and the matrix containing these deviates is post-
multiplied by the Cholesky factor. Because the Cholesky factorization is 
performed in each invocation, it is best to generate as many random vectors as 
needed at once.

Deviates from a multivariate normal distribution with means other than zero can 
be generated by using RANDOM with keywords Mvar_Normal and 
Covariances, then adding the vectors of means to each row of the result.

Binomial Distribution

Calling RANDOM with keywords Binomial, Parameters= [p, n] generates 
pseudorandom numbers from a binomial distribution with parameters n and p. 
Parameters n and p must be positive, and p must less than 1. The probability 
function (where n = Binom_n and p = Binom_p) is

for x = 0, 1, 2, …, n.

The algorithm used depends on the values of n and p. If n * p < 10 or p is less 
than machine epsilon, the inverse CDF technique is used; otherwise, the BTPE 
algorithm of Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is 
used. This is an acceptance /rejection method using a composition of four 
regions. (TPE=Triangle, Parallelogram, Exponential, left and right.)
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Cauchy Distribution

Calling RANDOM with the keyword Cauchy generates pseudorandom numbers 
from a Cauchy distribution. The probability density function is 

where T is the median and T − S is the first quartile. This function first gener-
ates standard Cauchy random numbers (T = 0 and S = 1) using the technique 
described below, and then scales the values using T and S. 

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform 
(0, 1) deviate, u, as tan [p (u − 0.5)]. Rather than evaluating a tangent directly, 
however, RANDOM generates two uniform (−1, 1) deviates, x1 and x2. These 
values can be thought of as sine and cosine values. If 

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate; 
otherwise, x1 and x2 are rejected and two new uniform (−1, 1) deviates are gen-
erated. This method is also equivalent to taking the ration of two independent 
normal deviates.

Chi-squared Distribution

Calling RANDOM with keywords Chi_squared and Parameters=Df generates 
pseudorandom numbers from a chi-squared distribution with Df degrees of free-
dom. If Df is an even integer less than 17, the chi-squared deviate r is generated 
as 

where n = Df /2 and the ui are independent random deviates from a uniform 
(0, 1) distribution. If Df is an odd integer less than 17, the chi-squared deviate is 
generated in the same way, except the square of a normal deviate is added to 
the expression above. If Df is greater than 16 or is not an integer, and if it is not 
too large to cause overflow in the gamma random number generator, the chi-
squared deviate is generated as a special case of a gamma deviate.
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Mixed Exponential Distribution

Calling RANDOM with keywords Mix_Exponential, and Parameters= [θ1, θ2] 
generates pseudorandom numbers from a mixture of two exponential distribu-
tions. The probability density function is 

for x > 0.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parame-
ter p is interpretable as a probability; and RANDOM with probability p 
generates an exponential deviate with mean θ1, and with probability 1 − p gen-
erates an exponential with mean θ2. When p is greater than 1, but less than 
θ1/(θ1 − θ2), then either an exponential deviate with mean θ1 or the sum of two 
exponentials with means θ1 and θ2 is generated. The probabilities are 
q = p − (p − 1) (θ1/θ2) and 1 − q, respectively, for the single exponential and 
the sum of the two exponentials.

Geometric Distribution

Calling RANDOM with keywords Geometric and Parameters=P generates 
pseudorandom numbers from a geometric distribution. The parameter P is the 
probability of getting a success on any trial. A geometric deviate can be inter-
preted as the number of trials until the first success (including the trial in which 
the first success is obtained). The probability function is

f(x) = P(1 − P)x–1

for x = 1, 2, … and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than 
(log (Ui))/(log (1 − P)), where the Ui are independent uniform(0, 1) random 
numbers (see Knuth 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 − P)/P. 
Such deviates can be obtained by subtracting 1 from each element of the 
returned vector of random deviates.
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Hypergeometric Distribution

Calling RANDOM with keywords Hypergeometric, and Parameter=[M, N, L,] 
generates pseudorandom numbers from a hypergeometric distribution with 
parameters N, M, and L. The hypergeometric random variable X can be thought 
of as the number of items of a given type in a random sample of size N that is 
drawn without replacement from a population of size L containing M items of 
this type. The probability function is

for x = max (0, N − L + M), 1, 2, …, min (N, M)

If the hypergeometric probability function with parameters N, M, and L evalu-
ated at N − L + M (or at 0 if this is negative) is greater than the machine, and 
less than 1.0 minus the machine epsilon, then RANDOM uses the inverse CDF 
technique. The routine recursively computes the hypergeometric probabilities, 
starting at x = max (0, N − L + M) and using the ratio

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, then 
RANDOM generates integer deviates uniformly in the interval [1, L − i] for 
i = 0, 1, ..., and at the i-th step, if the generated deviate is less than or equal to 
the number of special items remaining in the lot, the occurrence of one special 
item is tallied and the number of remaining special items is decreased by one. 
This process continues until the sample size of the number of special items in 
the lot is reached, whichever comes first. This method can be much slower than 
the inverse CDF technique. The timing depends on N. If N is more than half of 
L (which in practical examples is rarely the case), the user may wish to modify 
the problem, replacing N by L − N, and to consider the generated deviates to be 
the number of special items not included in the sample.

Logarithmic Distribution

Calling RANDOM with keywords Logarithmic and Parameter=a generates 
pseudorandom numbers from a logarithmic distribution. The probability func-
tion is 
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for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a. 
If a is less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of 
an inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, which 
gives special treatment to the highly probable values of 1 and 2 is used.

Lognormal Distribution

Calling RANDOM with keywords Lognormal, and Parameter=[µ, σ] generates 
pseudorandom numbers from a lognormal distribution. The scale parameter σ in 
the underlying normal distribution must be positive. The method is to generate 
normal deviates with mean µ and standard deviation Σ and then to exponentiate 
the normal deviates.

The probability density function for the lognormal distribution is

for x > 0. The mean and variance of the lognormal distribution are 
exp (µ + σ2/2) and exp (2µ + 2σ2) − exp (2µ + σ2), respectively.

Negative Binomial

Calling RANDOM with keywords Neg_binomial and Parameters=[r, p] gener-
ates pseudorandom numbers from a negative binomial distribution. The 
parameters r and p must be positive and p must be less than 1. The probability 
function is

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can 
be thought of as modeling the length of a sequence of Bernoulli trials until r 
successes are obtained, where p is the probability of getting a success on any 
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trial. In this form, the random variable takes values r, r + 1, r + 2, … and can 
be obtained from the negative binomial random variable defined above by add-
ing r to the negative binomial variable defined by adding r to the negative 
binomial variable. This latter form is also equivalent to the sum of r geometric 
random variables defined as taking values 1, 2, 3, ...

If rp/(1 − p) is less than 100 and (1 − p)r is greater than the machine epsilon, 
RANDOM uses the inverse CDF technique; otherwise, for each negative bino-
mial deviate, RANDOM generates a gamma (r, p/(1 − p)) deviate Y and then 
generates a Poisson deviate with parameter Y.

Discrete Uniform Distribution

Calling RANDOM with keywords Discrete_unif and Parameters=k generates 
pseudorandom numbers from a uniform discrete distribution over the integers 1, 
2, ..., k. A random integer is generated by multiplying k by a uniform (0, 1) ran-
dom number, adding 1.0, and truncating the result to an integer. This, of course, 
is equivalent to sampling with replacement from a finite population of size k.

Student’s t Distribution

Calling RANDOM with keywords Students_t and Parameters=Df generates 
pseudorandom numbers from a Student’s t distribution with Df degrees of free-
dom, using a method suggested by Kinderman et al. (1977). The method 
(“TMX” in the reference) involves a representation of the t density as the sum 
of a triangular density over (−2, 2) and the difference of this and the t density. 
The mixing probabilities depend on the degrees of freedom of the t distribu-
tion. If the triangular density is chosen, the variate is generated as the sum of 
two uniforms; otherwise, an acceptance/rejection method is used to generate the 
difference density.

Triangular Distribution 

Calling RANDOM with the keyword Triangular generates pseudorandom num-
bers from a triangular distribution over the unit interval. The probability density 
function is f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 − x), for 
0.5 < x ≤ 1. An inverse CDF technique is used.

von Mises Distribution

Calling RANDOM with keywords Von_mises and Parameters=c generates 
pseudorandom numbers from a von Mises distribution where c must be positive. 
The probability density function is 
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for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of 
order 0. The probability density is equal to 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distri-
bution as the majorizing distribution. It is due to Nest and Fisher (1979).

Weibull Distribution

Calling RANDOM with keywords Weibull and Parameters=[a,b] generates 
pseudorandom numbers from a Weibull distribution with shape parameter a and 
scale parameter b. The probability density function is

for x3  0, a > 0, and b > 0. The value of b is optional; if it is not specified, it is 
set to 1.0.

Function RANDOM uses an antithetic inverse CDF technique to generate a 
Weibull variate; that is, a uniform random deviate U is generated and the 
inverse of the Weibull cumulative distribution function is evaluated at 1.0 − U 
to yield the Weibull deviate.

Note that the Rayleigh distribution with probability density function

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2 
and scale parameter b equal to 

Stable Distribution

Calling RANDOM with keywords Stable and Parameters=[α, β′] generates 
pseudorandom numbers from a stable distribution with parameters α‘ and β′. α 
is the usual characteristic exponent parameter α and β′ is related to the usual 
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skewness parameter β of the stable distribution. With the restrictions 0 < α ≤ 2 
and − 1 ≤ β ≤ 1, the characteristic function of the distribution is

ϕ(t) = exp[−| t |a exp(−πiβ(1 − |1 − α|)sign(t)/2)] for α ≠ 1

and

ϕ(t) = exp[−| t |(1 + 2iβ ln| t |)sign(t)/π)] for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution 
is normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy.

The parameterization using β′ and the algorithm used here are due to Chambers, 
Mallows, and Stuck (1976). The relationship between β′ and the standard β is

β′ = −tan(π(1 − α)/2) tan(−πβ(1 − |1 − α|)/2) for α ≠ 1

and

β′ = β for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential 
random variate.

Multinomial Distribution

Calling RANDOM with keywords Multinomial, Probabilites, and Parame-
ters=ntrials generates pseudorandom numbers from a K-variate multinomial 
distribution with parameters n and p. k=N_ELEMENTS(Probabilities) and 
ntrials must be positive. Each element of Probabilites must be positive and the 
elements must sum to 1. The probability function 
(with n = n, k = k, and pi = Probabilities(i)) is

for xi ≥ 0 and

The deviate in each row of r is produced by generation of the binomial deviate 
x0 with parameters n and pi and then by successive generations of the condi-
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tional binomial deviates xj given x0, x1, …, xj-2 with parameters 
n − x0 − x1 − … − xj-2 and pj /(1 − p0 − p1 − … − pj-2).

Random Points on a K-dimensional Sphere

Calling RANDOM with the keywords Sphere and Parameters= k generates 
pseudorandom coordinates of points that lie on a unit circle or a unit sphere in 
K-dimensional space. For points on a circle (k = 2), pairs of uniform (− 1, 1) 
points are generated and accepted only if they fall within the unit circle (the 
sum of their squares is less than 1), in which case they are scaled so as to lie on 
the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are 
used. For three dimensions, two independent uniform (− 1, 1) deviates U1 and 
U2 are generated and accepted only if the sum of their squares S1 is less than 1. 
Then, the coordinates

are formed. For four dimensions, U1, U2, and S1 are produced as described 
above. Similarly, U3, U4, and S2 are formed. The coordinates are then

and

For spheres in higher dimensions, K independent normal deviates are generated 
and scaled so as to lie on the unit sphere in the manner suggested by Muller 
(1959).

Random Permutation

Calling RANDOM with the keyword Permutation generates a pseudorandom 
permutation of the integers from 1 to n. It begins by filling a vector of length n 
with the consecutive integers 1 to n. Then, with M initially equal to n, a random 
index J between 1 and M (inclusive) is generated. The element of the vector 
with the index M and the element with index J swap places in the vector. M is 
then decremented by 1 and the process repeated until M = 1.

Z U S Z U S Z S1 1 1 2 2 1 3 12 1 2 1 1 2= − = − = −, , and 

Z U Z U Z U S S1 1 2 2 3 3 1 21= = = −, , /� �

Z U S S4 4 1 21= −� � /
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Sample Indices

Calling RANDOM with the keywords Sample_indices and Parameters=npop 
generates the indices of a pseudorandom sample,without replacement, of size n 
numbers from a population of size npop. If n is greater than npop/2, the integers 
from 1 to npop are selected sequentially with a probability conditional on the 
number selected and the number remaining to be considered. If, when the i-th 
population index is considered, j items have been included in the sample, then 
the index i is included with probability (n − j)/(npop + 1 − i).

If n is not greater than npop/2, a O(n) algorithm due to Ahrens and Dieter 
(1985) is used. Of the methods discussed by Ahrens and Dieter, the one called 
SG* is used. It involves a preliminary selection of q indices using a geometric 
distribution for the distances between each index and the next one. If the pre-
liminary sample size q is less than n, a new preliminary sample is chosen, and 
this is continued until a preliminary sample greater in size than n is chosen. 
This preliminary sample is then thinned using the same kind of sampling as 
described above for the case in which the sample size is greater than half of the 
population size. This routine does not store the preliminary sample indices, but 
rather restores the state of the generator used in selecting the sample initially, 
and then passes through once again, making the final selection as the prelimi-
nary sample indices are being generated.

Example 1

In this example, RANDOM is used to generate five pseudorandom, uniform 
numbers. Since RANDOMOPT is not called, the generator used is a simple 
multiplicative congruential one with a multiplier of 16807.

RANDOMOPT, Set = 123457

; Set the random seed.

r  = RANDOM(5) 

; Call RANDOM to compute the random numbers.

PM, r

; Output the results.

0.966220

0.260711

0.766262

0.569337

0.844829 



RANDOM Function  535

Example 2: Poisson Distribution

In this example, random numbers from a Poisson distribution are computed.

RANDOMOPT, Set = 123457

r = RANDOM(5, /Poisson, Parameters = 0.5)

; Call RANDOM with keywords Poisson and Theta.

PM, r

 2

 0

 1

 0

 1

Example 3: Beta Distribution

In this example, random numbers are computed from a Beta distribution.

RANDOMOPT, set = 123457

r = RANDOM(5, /Beta, Parameter = [3,2])

; Call RANDOM with keywords Beta, Pin, and Qin.

PM, r

 0.281392

 0.948276

 0.398391

 0.310306

 0.829578

Example 4: Scaling the Results of RANDOM

This example computes deviates with uniform density over the interval (10, 20) 
and deviates from the normal distribution with a mean of 10 and a standard 
deviation of 2.

RANDOMOPT, Set = 123457

; Set the random number seed.

a = 10

; Define the lowerbound.

b = 20

; Define the upperbound.

r  = a + (b - a) * RANDOM(5)

; Call RANDOM to compute the deviates on (0,1) and scale the
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; results to (a,b).

PM, r

; Output the results.

19.6622

12.6071

17.6626

15.6934

18.4483

stdev = 2

; Define a standard deviation.

mean =  10

; Define a mean.

r = RANDOM(6, /Normal) * stdev + mean

; Call RANDOM to compute the deviates normal deviates and scale
; the results using the specified mean and standard deviation.

PM, r

; Output the results.

6.59363

14.4635

10.5137

12.5223

9.39352

5.71021

Example 5: Multivariate Normal Distribution

In this example, RANDOM generates five pseudorandom normal vectors of 
length 2 with variance covariance matrix equal to the following:

RANDOMOPT, Set = 123457

; Set the random number seed.

RM, cov, 2, 2

; Read the covariance matrix.

row 0: .5   .375

row 1: .375 .5

PM, RANDOM(5, /Mvar_Normal, Covariances = cov)

0.500 0.375

0.375 0.500
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1.45068      1.24634

0.765975  -0.0429410

0.0583781 -0.669214

0.903489     0.462826

 -0.866886    -0.933426

RANDOM_NPP Function 
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Usage

result =  RANDOM_NPP(tbegin, tend, ftheta,  theta_min, theta_max, neub)

Input Parameters

tbegin — Lower endpoint of the time interval of the process. 
tbegin must be nonnegative. Usually, tbegin = 0.

tend — Upper endpoint of the time interval of the process. 
tend must be greater than tbegin.

ftheta — Scalar string specifying a user-supplied function to provide the value 
of the rate of the process as a function of time. This function accepts one argu-
ment and must be defined over the interval from tbegin to tend and must be 
nonnegative in that interval. 

theta_min — Minimum value of the rate function ftheta() in the interval 
(tbegin, tend).   
If the actual minimum is unknown, set theta_min = 0.0.

theta_max — Maximum value of the rate function ftheta in the interval (tbe-
gin, tend). 
If the actual maximum is unknown, set theta_max to a known upper bound of 
the maximum. The efficiency of RANDOM_NPP is less the greater theta_max 
exceeds the true maximum.

neub — Upper bound on the number of events to be generated.
In order to be reasonably sure that the full process through time tend is gener-
ated, calculate neub as neub = X + 10.0 * SQRT(X), where X = theta_max * 
(tend - tbegin). 
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Returned Value

A one dimensional array containing the times to events. If then length of the 
result is less that neub, the time tend is reached before neub events are realized

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Routine RANDOM_NPP simulates a one-dimensional nonhomogeneous Pois-
son process with rate function theta in a fixed interval (tend - tbegin].

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Routine 
RANDOM_NPP uses a method of thinning a nonhomogeneous Poisson process 
{N*(t), t ≥ t0} with rate function λ*(t) ≥ λ(t) in (t0, t1], where the number of 
events, N*, in the interval (t0, t1] has a Poisson distribution with parameter

The function

is called the integrated rate function.In RANDOM_NPP, λ*(t) is taken to be a 
constant λ*(= theta_max) so that at time ti, the time of the next event ti + 1 is 
obtained by generating and cumulating exponential random numbers 

with parameter λ*, until for the first time

where the uj,i are independent uniform random numbers between 0 and 1. This 
process is continued until the specified number of events, neub, is realized or 

( )1

0

t

t
t dtµ = λ∫

Λ t t dt
t� � � �=
′� λ0

* *
1, 2,, , ,i iE E K

( )* * *
, 1, , /j i i i j iu t E E≤ + + + λL



RANDOM_NPP Function  539

until the time, tend, is exceeded. This method is due to Lewis and Shedler 
(1979), who also review other methods. The most straightforward (and most 
efficient) method is by inverting the integrated rate function, but often this is 
not possible.

If theta_max is actually greater than the maximum of λ(t) in (t0, t1], the routine 
will work, but less efficiently. Also, if λ(t) varies greatly within the interval, the 
efficiency is reduced. In that case, it may be desirable to divide the time interval 
into subintervals within which the rate function is less variable. This is possible 
because the process is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for 
the required number of events to be realized. Care must be taken, however, that 
ftheta is defined over the entire interval.

After simulating a given number of events, the next event can be generated by 
setting tbegin to the time of the last event (the sum of the elements in the result) 
and calling RANDOM_NPP again. Cox and Lewis (1966) discuss modeling 
applications of nonhomogeneous Poisson processes.

Example

In this example, RANDOM_NPP is used to generate the first five events in the 
time 0 to 20 (if that many events are realized) in a nonhomogeneous process 
with rate function

λ(t) = 0.6342 e0.001427t

for 0 < t ≤ 20.

Since this is a monotonically increasing function of t, the minimum is at 
t = 0 and is 0.6342, and the maximum is at t = 20 and is 
0.6342 e0.02854 = 0.652561.

.RUN

- FUNCTION ftheta_npp, t

-   return, .6342*exp(.001427*t)

- END

% Compiled module: FTHETA_NPP.

randomopt, set=123457

neub = 5



540  Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

tmax = .652561

tmin = .6342

tbegin=0

tend=20

r = RANDOM_NPP(tbegin, tend, ’ftheta_npp’, tmin, tmax, neub)

PM, r

0.0526598

0.407979

0.258399

0.0197666

0.167641

RANDOM_ORDER Function
Generates pseudorandom order statistics from a uniform (0, 1) distribution, or 
optionally from a standard normal distribution.

Usage

result = RANDOM_ORDER(ifirst, ilast, n)

Input Parameters

ifirst — First order statistic to generate.

ilast — Last order statistic to generate. 
ilast must be greater than or equal to ifirst. The full set of order statistics from 
ifirst to ilast is generated. If only one order statistic is desired, set ilast = ifirst. 

n — Size of the sample from which the order statistics arise.

Input Keywords

Double — If present and nonzero, double precision is used.

Uniform — If present and nonzero, generate pseudorandom order statistics 
from a uniform (0, 1) distribution. (Default)

Normal — If present and nonzero, generate pseudorandom order statistics from 
a standard normal distribution.
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Returned Value

An array of length ilast + 1 − ifirst containing the random order statistics in 
ascending order.

The first element is the ifirst order statistic in a random sample of size n from 
the uniform (0, 1) distribution.

Discussion

Routine RANDOM_ORDER generates the ifirst through the ilast order statistics 
from a pseudorandom sample of size n from a uniform 
(0, 1) distribution. Depending on the values of ifirst and ilast, different meth-
ods of generation are used to achieve greater efficiency. If ifirst = 1 and 
ilast = n, that is, if the full set of order statistics are desired, the spacings 
between successive order statistics are generated as ratios of exponential vari-
ates. If the full set is not desired, a beta variate is generated for one of the order 
statistics, and the others are generated as extreme order statistics from condi-
tional uniform distributions. Extreme order statistics from a uniform distribution 
can be obtained by raising a uniform deviate to an appropriate power.

Each call to RANDOM_ORDER yields an independent event. This means, for 
example, that if on one call the fourth order statistic is requested and on a sec-
ond call the third order statistic is requested, the “fourth” may be smaller than 
the “third”. If both the third and fourth order statistics from a given sample are 
desired, they should be obtained from a single call to RANDOM_ORDER (by 
specifying ifirst less than or equal to 3 and ilast greater than or equal to 4).

If the keyword Normal is present and nonzero, then RANDOM_ORDER gener-
ates the ifirst through the ilast order statistics from a pseudorandom sample of 
size n, from a normal (0, 1) distribution

Example

In this example, RANDOM_ORDER is used to generate the fifteenth through 
the nineteenth order statistics from a sample of size twenty.

r  =  random_order(15, 19, 20)

pm, r

     0.706909

     0.808627

     0.874552
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     0.922146

     0.957402

RAND_TABLE_2WAY Function
Generates a pseudorandom two-way table.

Usage

result = RAND_TABLE_2WAY (row_totals, col_totals)

Input Parameters

row_totals — One dimensional array  containing the row totals.

col_totals — One dimensional array containing the column totals. (Input)
The elements of row_totals and col_totals must be nonnegative and must sum 
to the same quantity.

Returned Value

A N_ELEMENTS(row_totals) by N_ELEMENTS(col_totals) random matrix 
with the given row and column totals.

Discussion

Routine RAND_TABLE_2WAY generates pseudorandom entries for a two-way 
contingency table with fixed row and column totals. The method depends on the 
size of the table and the total number of entries in the table. If the total number 
of entries is less than twice the product of the number of rows and columns, the 
method described by Boyette (1979) and by Agresti, Wackerly, and Boyette 
(1979) is used. In this method, a work vector is filled with row indices so that 
the number of times each index appears equals the given row total. This vector 
is then randomly permuted and used to increment the entries in each row so that 
the given row total is attained.

For tables with larger numbers of entries, the method of Patefield (1981) is 
used. This method can be considerably faster in these cases. The method 
depends on the conditional probability distribution of individual elements, given 
the entries in the previous rows. The probabilities for the individual elements 
are computed starting from their conditional means.
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Example

In this example, RAND_TABLE_2WAY is used to generate a two by three table 
with row totals 3 and 5, and column totals 2, 4, and 2.

r  =  RAND_TABLE_2WAY([3, 5], [2, 4, 2]) 

PM, r

           2           1           0

           0           3           2 

RAND_ORTH_MAT Function
Generates a pseudorandom orthogonal matrix or a correlation matrix.

Usage

result = RAND_ORTH_MAT(n)

Input Parameters

n — The order of the matrix to be generated.

Returned Value

A two-dimensional array containing the n by n random correlation matrix.

Input Keywords

Double  If present and nonzero, double precision is used.

Eigenvalues  A one-dimensional array of length n containing the eigenval-
ues of the correlation matrix to be generated.   The elements of Eigenvalues 
must be positive, they must sum to n, and they cannot all be equal.

A_Matrix  A two-dimensional array containing n by n random orthogonal 
matrix. A random correlation matrix is generated using the orthogonal matrix 
input in A_Matrix. The keyword Eigenvalues must also be supplied if A_Matrix 
is used.



544  Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Discussion

Routine RAND_ORTH_MAT generates a pseudorandom orthogonal matrix 
from the invariant Haar measure. For each column, a random vector from a uni-
form distribution on a hypersphere is selected and then is projected onto the 
orthogonal complement of the columns already formed. The method is 
described by Heiberger (1978). (See also Tanner and Thisted 1982.)

If the keyword Eigenvalues is used, a correlation matrix is formed by applying 
a sequence of planar rotations to the matrix AT DA, where D = diag(Eigenval-
ues(0), …, Eigenvalues(n-1)), so as to yield ones along the diagonal. The 
planar rotations are applied in such an order that in the two by two matrix that 
determines the rotation, one diagonal element is less than 1.0 and one is greater 
than 1.0. This method is discussed by Bendel and Mickey (1978) and by Lin 
and Bendel (1985).

The distribution of the correlation matrices produced by this method is not 
known. Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the 
distribution.

For larger matrices, rounding can become severe; and the double precision 
results may differ significantly from single precision results.

Example

In this example, RAND_ORTH_MAT is used to generate a 4 by 4 pseudoran-
dom correlation matrix with eigenvalues in the ratio 1:2:3:4. 

RANDOMOPT, set = 123457

a = RAND_ORTH_MAT(4)

ev = .4d0*[1.0d0, 2.0d0, 3.0d0, 4.0d0]

cor = RAND_ORTH_MAT(n, Eigenvalues = ev, A_Matrix= a)

PM, cor

      1.00000    -0.235786    -0.325795    -0.110139

    -0.235786      1.00000     0.190564   -0.0172391

    -0.325795     0.190564      1.00000    -0.435339

    -0.110139   -0.0172391    -0.435339      1.00000
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RANDOM_SAMPLE Function
Generates a simple pseudorandom sample from a finite population.

Usage

result = RANDOM_SAMPLE(nsamp, population)

Input Parameters

nsamp — The sample size desired.

population  A one or two dimensional array containing the population to be 
sampled. If either of the keywords First_Call or Additional_Call are specified, 
then population contains a different part of the population on each invocation, 
otherwise population contains the entire population.

Returned Value

nsamp by nvar array containing the sample, where nvar is the number of col-
umns in the argument population.

Input Keywords

Double  If present and nonzero, double precision is used.

First_Call  If present and nonzero, then this is the first invocation with this 
data; additional calls to RANDOM_SAMPLE may be made to add to the popu-
lation. Additional calls should be made using the keyword Additional_Call.  
Keywords Index and Npop are required if First_Call is set. See Example 2 .

Additional_Call  If present and nonzero, then this is an additional invocation 
of RANDOM_SAMPLE, and updating for the subpopulation in population is 
performed. Keywords Index, Npop and Sample are required if Additional_Call 
is set. It is not necessary to know the number of items in the population in 
advance. Npop is used to cumulate the population size and should not be 
changed between calls to RANDOM_SAMPLE. See Example 2.
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Input/Output Keywords

Index  A one-dimensional array of length nsamp containing the indices of the 
sample in the population. Output if keyword First_Call is used. Input/Output if 
keyword Additional_Call is used.

Npop  The number of items in the population. Output if keyword First_Call 
is used. Input/Output if keyword Additional_Call is used.

Sample  An array of size nsamp by nvar containing the sample. Initially, the 
result of calling RANDOM_SAMPLE with keyword First_Call is used for 
Sample. 

Discussion

Routine RANDOM_SAMPLE generates a pseudorandom sample from a given 
population, without replacement, using an algorithm due to McLeod and Bell-
house (1983).

The first nsamp items in the population are included in the sample. Then, for 
each successive item from the population, a random item in the sample is 
replaced by that item from the population with probability equal to the sample 
size divided by the number of population items that have been encountered at 
that time.

Example 1

In this example, RANDOM_SAMPLE is used to generate a sample of size 5 
from a population stored in the matrix population. 

RANDOMOPT, Set = 123457

pop = STATDATA(2)

samp = RANDOM_SAMPLE(5, pop) 

PM, samp

      1764.00      36.4000

      1828.00      62.5000

      1923.00      5.80000

      1773.00      34.8000

      1769.00      106.100
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Example 2

Routine RANDOM_SAMPLE is now used to generate a sample of size 5 from 
the same population as in the example above except the data are input to 
RANDOM_SAMPLE one observation at a time. This is the way 
RANDOM_SAMPLE may be used to sample from a file on disk or tape. Notice 
that the number of records need not be known in advance.

RANDOMOPT, Set = 123457

pop = STATDATA(2)

samp = RANDOM_SAMPLE(5, pop(0, *), /First_Call, Index = ii, 
Npop=np)

FOR i=1,175 DO samp = RANDOM_SAMPLE(5, pop(i, *), /
Additional_Call, $

      index = ii, npop = np, sample =  samp)

PM, samp

      1764.00      36.4000

      1828.00      62.5000

      1923.00      5.80000

      1773.00      34.8000

      1769.00      106.100

RAND_FROM_DATA Function
Generates pseudorandom numbers from a multivariate distribution determined 
from a given sample.

Usage

result = RAND_FROM_DATA(n_random, x, nn)

Input Parameters

n_random  Number of random multivariate vectors to generate.

x  Two dimensional array of size nsamp by ndim containing the given 
sample.

nn  Number of nearest neighbors of the randomly selected point in x that are 
used to form the output point in the result.
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Returned Value

n by ndim matrix containing the random multivariate vectors in its rows. 

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Given a sample of size nsamp of observations of a k-variate random variable, 
RAND_FROM_DATA generates a pseudorandom sample with approximately 
the same moments as the given sample. The sample obtained is essentially the 
same as if sampling from a Gaussian kernel estimate of the sample density. (See 
Thompson 1989.) Routine RAND_FROM_DATA uses methods described by 
Taylor and Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of x. An obser-
vation, xj, is chosen randomly; its nearest m (= nn) neighbors, 

are determined; and the mean 

of those nearest neighbors is calculated. Next, a random sample

u1, u2, …, um is generated from a uniform distribution with lower bound 

and upper bound

The random variate delivered is

x x xj j jm1 2
, , ,K

 x j

1 3 1
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m

m
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1 3 1
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The process is then repeated until n such simulated variates are generated and 
stored in the rows of the result.

Example

In this example, RAND_FROM_DATA is used to generate 5 pseudorandom 
vectors of length 4 using the initial and final systolic pressure and the initial and 
final diastolic pressure from Data Set A in Afifi and Azen (1979) as the fixed 
sample from the population to be modeled. (Values of these four variables are in 
the seventh, tenth, twenty-first, and twenty-fourth columns of data set number 
nine in routine STATDATA, see Chapter 13: Utilities of this manual).

RANDOMOPT, Set = 123457
r = STATDATA(9)

x = FLTARR(113, 4)

x(*, 0) = r(*,6)

x(*, 1) = r(*,9)

x(*, 2) = r(*,20)

x(*, 3) = r(*,23) 

r  =  RAND_FROM_DATA(5, x, 5)

PM, r

      162.767      90.5057      153.717      104.877

      153.353      78.3180      176.664      85.2155

      93.6958      48.1675      153.549      71.3688

      101.751      54.1855      113.121      56.2916

      91.7403      58.7684      48.4368      28.0994

CONT_TABLE Procedure
Sets up table to generate pseudorandom numbers from a general continuous 
distribution.

Usage

CONT_TABLE, f, iopt, ndata, table 

u x x xl jl j
l

m

j− +
=
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1
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Input Parameters

f  A scalar string specifying a user-supplied function to compute the cumula-
tive distribution function. The argument to the function is the point at which the 
distribution function is to be evaluated.

iopt  Indicator of the extent to which table is initialized prior to calling 
CONT_TABLE. 

ndata  Number of points at which the CDF is evaluated for interpolation. 
ndata must be greater than or equal to 4. 

Input/Output Parameters

table  ndata by 5 table to be used for interpolation of the cumulative distribu-
tion function.
The first column of table contains abscissas of the cumulative distribution func-
tion in ascending order, the second column contains the values of the CDF 
(which must be strictly increasing), and the remaining columns contain values 
used in interpolation. The first row of table corresponds to the left limit of the 
support of the distribution and the last row corresponds to the right limit of the 
support; that is, table (0, 1) = 0.0 and table(ndata-1, 1) = 1.0.

iopt Action

0 CONT_TABLE fills the last four columns 
of table. The user inputs the points at 
which the CDF is to be evaluated in the 
first column of table. These must be in 
ascending order.

1 CONT_TABLE fills the last three columns 
of table. The user supplied function f is not 
used and may be a dummy function; 
instead, the cumulative distribution func-
tion is specified in the first two columns of 
table. The abscissas (in the first column) 
must be in ascending order and the func-
tion must be strictly monotonically 
increasing.
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Input Keywords

Double  If present and nonzero, double precision is used. 

Discussion

Routine CONT_TABLE sets up a table that routine RAND_GEN_CONT (page 
551) can use to generate pseudorandom deviates from a continuous distribu-
tion. The distribution is specified by its cumulative distribution function, which 
can be supplied either in tabular form in table or by a function f. See the docu-
mentation for the routine RAND_GEN_CONT for a description of the method.

Example

For an example of using CONT_TABLE see the example for routine 
RAND_GEN_CONT (page 551).

RAND_GEN_CONT Function
Generates pseudorandom numbers from a general continuous distribution.

Usage

result =  RAND_GEN_CONT(n, table)

Input Parameters

n  Number of random numbers to generate.

table A two-dimensional array setup using CONT_TABLE to be used for 
interpolation of the cumulative distribution function.
The first column of table contains abscissas of the cumulative distribution func-
tion in ascending order, the second column contains the values of the CDF 
(which must be strictly increasing beginning with 0.0 and ending at 1.0) and the 
remaining columns contain values used in interpolation. 

Returned Value

An array of length n containing the random deviates.



552  Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Input Keywords

Double  If present and nonzero, double precision is used. 

Discussion

Routine RAND_GEN_CONT generates pseudorandom numbers from a continu-
ous distribution using the inverse CDF technique, by interpolation of points of 
the distribution function given in table, which is set up by routine 
CONT_TABLE (page 549). A strictly monotone increasing distribution func-
tion is assumed. The interpolation is by an algorithm attributable to Akima 
(1970), using piecewise cubics. The use of this technique for generation of ran-
dom numbers is due to Guerra, Tapia, and Thompson (1976), who give a 
description of the algorithm and accuracy comparisons between this method and 
linear interpolation. The relative errors using the Akima interpolation are gener-
ally considered very good.

Example

In this example, RAND_GEN_CONT (page 551) is used to set up a table for 
generation of beta pseudorandom deviates. The CDF for this distribution is 
computed by the routine BETACDF (Chapter 11). The table contains 100 points 
at which the CDF is evaluated and that are used for interpolation. Notice that 
two warnings are issued during the computations for this example.

FUNCTION cdf, x

  return, BETACDF(x, 3., 2.)

END

iopt = 0

ndata = 100;

table = FLTARR(100, 5)

x = 0.0;

table(*,0) = FINDGEN(100)/100.

CONT_TABLE, ’cdf’, iopt, ndata, table

RANDOMOPT, Set = 123457

r = RAND_GEN_CONT(5, table) 
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% BETACDF: Note: STAT_ZERO_AT_X

Since "X" = 0.000000e+00 is less than or equal to zero, 

the distribution function is zero at "x".

% CONT_TABLE: Warning: STAT_SECOND_COL_TABLE3

CDF in the second column of table did not begin at 0.0 

and end at 1.0, but they have been adjusted. Prior 

to adjustment, table(0, 1) = 0.000000e+00 and 

table(ndata-1, 1)= 9.994079e-01.

PM, r

      0.92079391

      0.46412855

      0.76678398

      0.65357975

      0.81706959

DISCR_TABLE Function
Sets up table to generate pseudorandom numbers from a general discrete 
distribution.

Usage

result =  DISCR_TABLE(prf, del, nndx, imin, nmass)

Input Parameters

prf  A scalar string specifying a user-supplied function to compute the proba-
bility associated with each mass point of the distribution The argument to the 
function is the point at which the probability function is to be evaluated. The 
argument to the function can range from imin to the value at which the cumula-
tive probability is greater than or equal to 1.0 − del.

del  Maximum absolute error allowed in computing the cumulative probabi 
ity. 
Probabilities smaller than del are ignored; hence, del should be a small positive 
number. If del is too small, however, cumpr (nmass-1) must be exactly 1.0 since 
that value is compared to 1.0 − del.
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nndx  The number of elements of cumpr available to be used as indexes.   
nndx must be greater than or equal to 1. In general, the larger nndx is, to within 
sixty or seventy percent of nmass, the more efficient the generation of random 
numbers using RAND_GEN_DISCR will be.

Input/Out Parameters

imin  Scalar containing the smallest value the random deviate can assume. 
By default, prf is evaluated at imin. If this value is less than del, imin is incre-
mented by 1 and again prf is evaluated at imin. This process is continued until 
prf(imin) ≥ del. imin is output as this value and result(0) is output as prf(imin).

nmass  Scalar containing the number of mass points in the distribution.   
Input, if keyword CUM_probs is used; otherwise, output.
By default, nmass is the smallest integer such that 
prf(imin + nmass− 1) > 1.0 − del. nmass does include the points iminin + j 
for which prf(iminin + j) < del, for j = 0, 1, …, 
iminout − iminin, where iminin denotes the input value of imin and iminout 
denotes its output value.

Returned Value

Array, cumpr, of length nmass + nndx containing in the first nmass positions, 
the cumulative probabilities and in some of the remaining positions, indexes to 
speed access to the probabilities.

Input Keywords

Double  If present and nonzero, double precision is used.

Cum_Probs  One dimensional array of length nmass containing the cumula-
tive probabilities to be used in computing the index portion of the result. If the 
keyword Cum_Probs is used, prf is not used and may be a dummy function.

Discussion

Routine DISCR_TABLE sets up a table that routine RAND_GEN_CONT (page 
551) uses to generate pseudorandom deviates from a discrete distribution. The 
distribution can be specified either by its probability function prf or by a vector 
of values of the cumulative probability function. Note that prf is not the cumu-
lative probability distribution function. If the cumulative probabilities are 
already available in Cum_Probs, the only reason to call DISCR_TABLE is to 
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form an index vector in the upper portion of the result so as to speed up the 
generation of random deviates by the routine RAND_GEN_CONT.

Example 1

In this example, DISCR_TABLE is used to set up a table to generate pseudo-
random variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly using 
keyword Cum_Probs and request 3 indexes to be computed (nndx = 4). Since 
the number of mass points is so small, the indexes would not have much effect 
on the speed of the generation of the random variates.

function PRF, x

  return, 0

end

cum_probs = [.05, .5, .81, .85, 1]

cumpr = DISCR_TABLE(’PRF’, 0.00001, 4, 1, 5, cum_probs = 
cum_probs)

PM, cumpr 

     0.0500000

     0.500000

     0.810000

     0.850000

      1.00000

      3.00000

      1.00000

      2.00000

      5.00000
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Example 2

This example, DISCR_TABLE is used to set up a table to generate binomial 
variates with parameters 20 and 0.5. The routine BINOMIALPDF (Chapter 11, 
Probability Distribution and Inverses) is used to compute the probabilities.

FUNCTION PRF, ix

  RETURN,  BINOMIALPDF(ix, 20, .5)

END

cumpr = DISCR_TABLE(’PRF’, 0.00001, 12, 0, 21)

PM, cumpr 

  1.90735e-05

  0.000200272

   0.00128746

   0.00590802

    0.0206938

    0.0576583

     0.131587

     0.251722

     0.411901

     0.588099

     0.748278

     0.868413

     0.942342

     0.979306

     0.994092

     0.998713

     0.999800

     0.999981

      1.00000

      11.0000

      1.00000

      7.00000

      8.00000

      9.00000
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      9.00000

      10.0000

      11.0000

      11.0000

      12.0000

      13.0000

      19.0000

RAND_GEN_DISCR Function
Generates pseudorandom numbers from a general discrete distribution using an 
alias method or optionally a table lookup method.

Usage

result =  RAND_GEN_DISCR(n, imin, nmass, probs)

Input Parameters

n — Number of random numbers to generate.

imin — Smallest value the random deviate can assume.   
This is the value corresponding to the probability in probs(0).

nmass — Number of mass points in the discrete distribution.

probs — Array of length nmass containing probabilities associated with the 
individual mass points. The elements of probs must be nonnegative and must 
sum to 1.0. 

If the keyword Table is used, then probs is a vector of length at least nmass + 1 
containing in the first nmass positions the cumulative probabilities and, possi-
bly, indexes to speed access to the probabilities. 
Routine DISCR_TABLE (page 553) can be used to initialize probs properly. If 
no elements of probs are used as indexes, probs (nmass) is 0.0 on input. The 
value in probs(0) is the probability of imin. The value in probs (nmass-1) must 
be exactly 1.0 (since this is the CDF at the upper range of the distribution.)

Returned Value

An integer array of length n containing the random discrete deviates.
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Input Keywords

Double — If present and nonzero, double precision is used. 

Table — If present and nonzero, generate pseudorandom numbers from a gen-
eral discrete distribution using a table lookup method. If this keyword is used, 
then probs is a vector of length at least nmass + 1 containing in the first nmass 
positions the cumulative probabilities and, possibly, indexes to speed access to 
the probabilities. Routine DISCR_TABLE (page 553) can be used to initialize 
probs properly.

Discussion

Routine RAND_GEN_DISCR generates pseudorandom numbers from a discrete 
distribution with probability function given in the vector probs; that is

Pr(X = i) = pj

for i = imin, imin + 1, …, imin + nm − 1 where j = i − imin + 1, pj = probs(j), 

imin = imin, and nm = nmass.

The algorithm is the alias method, due to Walker (1974), with modifications 
suggested by Kronmal and Peterson (1979). 

If the keyword Table is used, RAND_GEN_DISCR generates pseudorandom 
deviates from a discrete distribution, using the table probs, which contains the 
cumulative probabilities of the distribution and, possibly, indexes to speed the 
search of the table. The DISCR_TABLE (page 553) can be used to set up the 
table probs. RAND_GEN_DISCR uses the inverse CDF method to generate the 
variates.

Example 1

In this example, RAND_GEN_DISCR is used to generate five pseudorandom 
variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15
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probs = [.05, .45, .31, .04, .15]

n = 5

imin = 1

nmass = 5

RANDOMOPT, Set_seed = 123457

r = RAND_GEN_DISCR(n, imin, nmass, probs)

PM, r

           3

           2

           2

           3

           5

Example 2

In this example, DISCR_TABLE (page 553) is used to set up a table and then 
RAND_GEN_DISCR is used to generate five pseudorandom variates from the 
binomial distribution with parameters 20 and 0.5.

FUNCTION PRF, ix

  RETURN,  BINOMIALPDF(ix, 20, .5)

END

imin = 0

nmass = 21

RANDOMOPT, Set_seed = 123457

cumpr = DISCR_TABLE(’prf’, 0.00001, 12, imin, nmass)

r = RAND_GEN_DISCR(n, imin, nmass, cumpr, /table) 

PM, r

          14

           9

          12

          10

          12
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RANDOM_ARMA Function 
Generates a time series from a specific ARMA model.

Usage

result = RANDOM_ARMA(n, nparams)

result = RANDOM_ARMA(n, nparams, ar)

result = RANDOM_ARMA(n, nparams, ma)

result = RANDOM_ARMA(n, nparams, ar, ma)

Input Parameters

n — Number of observations to be generated. Parameter n must be greater than 
or equal to one.

nparams — One-dimensional array containing the parameters p and q consecu-
tively. nparams(0) = p, where p is the number of autoregressive parameters. Pa-
rameter p must be greater than or equal to zero. nparams(1) = q, where q is the 
number of moving average parameters. Parameter q must be greater than or 
equal to zero.

ar — One-dimensional array of length p containing the autoregressive parame-
ters.

ma — One-dimensional array of length q containing the moving average pa-
rameters.

Returned Value

result — One-dimensional array of length n containing the generated time se-
ries.

Input Keywords

Double — If present and nonzero, double precision is used.

Const — Overall constant. See the Discussion section.

Default:  Const = 0

Var_Noise — If present (and Input_Noise is not used), the noise at will be gen-
erated from a normal distribution with mean 0 and variance Var_Noise.
Keywords Var_Noise and Input_Noise can not be used together.
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Default:  Var_Noise = 1.0

Input_Noise — One-dimensional array of length n + max (Ar_Lags(i)) contain-
ing the random noises. Keywords Input_Noise and Var_Noise can not be used 
together. Keywords Input_Noise and Output_Noise can not be used together.

Ar_Lags — One-dimensional array of length p containing the order of the non-
zero autoregressive parameters. 

Default:  Ar_Lags = [1, 2, ..., p]

Ma_Lags — One-dimensional array of length q containing the order of the non-
zero moving average parameters.

Default:  Ma_Lags = [1, 2, ..., q]

W_Init — One-dimensional array of length max (Ar_Lags(i)) containing the 
initial values of the time series.

Default: W_Init(*) = Const/(1 − ar(0) − ar(1) − …− ar(p − 1))

Accept_Reject — If present and nonzero, the random noises will be generated 
from a normal distribution using an acceptance/rejection method. If keyword 
Accept_Reject is not used, the random noises will be generated using an in-
verse normal CDF method. This argument will be ignored if keyword 
Input_Noise is used.

Output Keywords

Output_Noise — Named variable into which a one-dimensional array of length 
n + max (Ma_Lags(i)) containing the random noises is stored.

Discussion

Function RANDOM_ARMA simulates an ARMA(p, q) process, {Wt}, for 
t = 1, 2, ..., n. The model is 

φ θ θ( ) ( )B W B A t Zt t= + ∈0

φ φ φ φ

θ θ θ θ

B B B B

B B B B

p
p

q
q

� �
� �

= − − − −

= − − − −

1

1

1 2
2

1 2
2

K

K



562  Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Let µ be the mean of the time series {Wt}. The overall constant θ0 (Const) is 

Time series whose innovations have a nonnormal distribution may be simulated 
by providing the appropriate innovations in Input_Noise and start values in 
W_Init.

The time series is generated according to the following model:

X(i) = Const + ar(0) * X(i – Ar_Lags(0)) + … + 

ar(p – 1) * X(i – Ar_Lags(p – 1)) +

A(I) – ma(0) * A(i – Ma_Lags(0)) − …−

ma(q – 1) * A(i – Ma_Lags(q – 1))

where the constant is related to the mean of the series, 

as follows:

and where

X(t) = W(t), t = 0, 1, …, n − 1

and

W(t) = W_Init(t + p), t = –p, –p + 1, …, −2,−1

and A is either Input_Noise (if Input_Noise is used) or Output_Noise (other-
wise).

Example 1

In this example, RANDOM_ARMA is used to generate a time series of length 
five, using an ARMA model with three autoregressive parameters and two mov-
ing average parameters. The start values are 0.1000, 0.0500, and 0.0375.

θ
µ
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RANDOMOPT, set  =  123457

n  =  5

nparams  =  [3, 2]

ar  =  [0.5, 0.25, 0.125]

ma  =  [-0.5, -0.25]

r  =  RANDOM_ARMA(n, nparams, ar, ma)

PM, r, Format = "(5F10.3)",$

        Title = "                   ARMA random deviates"

                 ARMA random deviates

     0.637     0.317    -0.366    -2.122    -1.407

Example 2

In this example, a time series of length 5 is generated using an ARMA model 
with 4 autoregressive parameters and 2 moving average parameters. The start 
values are 0.1, 0.05 and 0.0375.

RANDOMOPT, set  =  123457

n  =  5

nparams  =  [3, 2]

ar  =  [0.5, 0.25, 0.125]

ma  =  [-0.5, -0.25]

wi  =  [0.1, 0.05, 0.0375]

theta0  =  1

avar  =  0.1

r  =  RANDOM_ARMA(n, nparams, ar, ma, /Accept_Reject, $

                  W_Init = wi, Const = theta0, $

                  Var_Noise = avar)

PM, r, Format = "(5F10.3)", $

           Title = "                 ARMA random deviates:"

                 ARMA random deviates:

     1.467     1.788     2.459     3.330     3.941

Warning Errors

STAT_RNARM_NEG_VAR — VAR(a) = “Var_Noise” = #, VAR(a) must be 
greater than 0. The absolute value of # is used for VAR(a).
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FAURE_INIT Function
Initializes the structure used for computing a shuffled Faure sequence.

Usage

result = FAURE_INIT(ndim)

Input Parameters

ndim  The dimension of the hyper-rectangle.

Returned Value

A structure that contains information about the sequence.

Input Keywords

Base  The base of the Faure sequence. 
Default: The smallest prime greater than or equal to ndim.

Skip  The number of points to be skipped at the beginning of the Faure 
sequence. Default: 

where

and B is the largest representable integer.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set

/ 2 1m
base

−  

log  /logB basem =   

[ ]1,..., 0,1 , 1,
d

nx x d∈ ≥
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is 

where the supremum is over all subsets of [0, 1]d of the form

 

λ is the Lebesque measure, and

is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there 
exists a constant c(d), depending only on d, such that 

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the 
keyword Base defaults to the smallest prime greater than or equal to the 
dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

where ai (n) are integers,
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The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure 
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive 
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized 
Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are 
in the three-dimensional unit cube.
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Note that FAURE_INIT is used to create a structure that holds the state of the 
sequence. Each call to FAURE_NEXT_PT returns the next point in the 
sequence and updates the state structure.

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

     0.333689     0.492659    0.0640654

     0.667022     0.825992     0.397399

     0.778133     0.270436     0.175177

     0.111467     0.603770     0.508510

     0.444800     0.937103     0.841843

FAURE_NEXT_PT Function
Computes a shuffled Faure sequence.

Usage

result = FAURE_NEXT_PT(npts, state)

Input Parameters

npts  The number of points to generate in the hyper-rectangle.

state  State structure created by a call to FAURE_INIT.

Returned Value

An array of size npts by state.dim containing the npts next points in the shuffled 
Faure sequence.

Input Keywords

Double  If present and nonzero, double precision is used.
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Output Keywords

Skip  The current point in the sequence. The sequence can be restarted by 
initializing a new sequence using this value for Skip, and using the same dimen-
sion for ndim.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set

is  

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and

is the number of the xj contained in E. 

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there 
exists a constant c(d), depending only on d, such that 

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the 
keyword Base defaults to the smallest prime greater than or equal to the 
dimension.
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The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion

where ai(n) are integers,

The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure 
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.
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The shuffling used is the b-ary Gray code. The function G(n) maps the positive 
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized 
Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are 
in the three-dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the 
sequence. Each call to FAURE_NEXT_PT returns the next point in the 
sequence and updates the state structure. 

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

     0.333689     0.492659    0.0640654

     0.667022     0.825992     0.397399

     0.778133     0.270436     0.175177

     0.111467     0.603770     0.508510

     0.444800     0.937103     0.841843
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Error Handling
Informational Error codes 
for routines .................... CMAST_ERR_TRANS Function

Sets options for error 
recovery ............................... CMAST_ERR_STOP Function

Sets options for error 
printing ...............................  CMAST_ERR_PRINT Function
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MACHINE Function 
Returns information describing the computer’s arithmetic.

Usage

result = MACHINE( )

Returned Value 

result — The information describing the computer’s arithmetic is returned in a 
structure.

Output Keywords

Float — If present and nonzero, a structure containing the information describ-
ing the single-precision, floating-point arithmetic is returned.

Double — If present and nonzero, a structure containing the information 
describing the single-precision, floating-point arithmetic is returned.

Discussion

Function MACHINE returns information describing the computer’s arithmetic. 
This can be used to make programs machine independent. The information 
returned by MACHINE is in the form of a structure. A different structure is 
used for each type: integer, float, and double. Depending on how MACHINE is 
called, a different structure is returned. 

The default action of MACHINE is to return the structure IMACHINE which 
contains integer information on the computer’s arithmetic. By using either the 
keywords Float or Double, information about the floating- or double-precision 
arithmetic is returned in structures FMACHINE or DMACHINE. 

The contents of the these structures are described below.

Integer Information: IMACHINE

Assume that integers are represented in M-digit, base A form as

σ xkAkM

∑
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where σ is the sign and 0 ≤ xk < A for k = 0, ..., M. Then, the following table 
describes the tags:

Assume that floating-point numbers are represented in N-digit, base B form as

where σ is the sign and 0 ≤ xk < B for k = 1, ..., N for and Emin ≤ E ≤ Emax.

Floating- and Double-precision Information: FMACHINE 
and DMACHINE

Information concerning the floating- or double-precision arithmetic of the com-
puter is contained in the structures FMACHINE and 
DMACHINE. These structures are returned into named variables by calling 

Tag Definition

BITS_PER_CHAR C, bits per character

INTEGER_BASE A, the base

INTEGER_DIGITS Ms, the number of base-A digits in a short int

MAX_INTEGER , the largest short int

LONG_DIGITS Ml, the number of base-A digits in a long int

MAX_LONG , the largest long int

Tag Definition

FLOAT_BASE B, the base

FLOAT_DIGITS Nf, the number of base-B digits in float

FLOAT_MIN_EXP , the smallest float exponent

FLOAT_MAX_EXP , the largest float exponent

DOUBLE_DIGETS Nd, the number of base-B digits in double

DOUBLE_MIN_EXP , the largest long int

DOUBLE_MAX_EXP , the number of base-B digits in double

AMs 1–

AMl 1–

σBE xkB k–N

∑

Eminf

Emaxf

Emind

Emaxd
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MACHINE with the keywords Float for FMACHINE and Double for 
DMACHINE.

Assume that float numbers are represented in Nf- digit, base B form as

, 

where σ is the sign, 0 ≤ xk < B for k = 1, 2, ..., Nf and

. 

Note that if we make the assignment imach = MACHINE( ), then B = 
imach.FLOAT_BASE, Nf = imach.FLOAT_DIGITS,

, 

and

.

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN (Not a 
Number) as the result of various otherwise illegal operations, such as computing 
0/0. If the assignment amach = MACHINE(/Float) is made, then on computers 
that do not support NaN, a value larger than amach. MAX_POS is returned in 
amach.NAN. On computers that do not have a special representation for infin-
ity, amach.POS_INF contains the same value as amach.MAX_POS.

The structure IMACHINE is defined by the following table:

σBE xkB k–

k 1=

N∑

Emin f
E Emaxf

≤ ≤

Emin f
imach.FLOAT_MIN_EXP=

Emax
f

imach.FLOAT_MAX_EXP=
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The structure DMACHINE contains machine constants that define the com-
puter’s double arithmetic. Note that for double, if the assignment imach = 
MACHINE( ) is made, then it

B = imach.FLOAT_BASE, Nf = imach.DOUBLE_DIGITS,

, 

and

. 

Missing values in PV-WAVE:IMSL Statistics procedures and functions are 
often indicated by NaN. There is no missing-value indicator for integers. Users 
ususally have to convert from their missing value indicators to NaN.

Example

In this example, all values returned by MACHINE are printed on a machine 
with IEEE (Institute for Electrical and Electronics Engineering) arithmetic.

i = machine()

f = machine(/Float)

d = machine(/Double)

; Call INFO with the keyword Structure set to view the contents of the
; structures.

Tag Definition

MIN_POS BEminf –1, the smallest positive number

MAX_POS BEmaxf(1 – B–Nf ), the largest number

MIN_REL_SPACE B – Nf, the smallest relative spacing

MAX_REL_SPACE B1– Nf, the largest relative spacing

LOG10_BASE log10(B)

NAN NaN

POS_INF positive machine infinity

NEG_INF negative machine infinity

Emin
f

imach.DOUBLE_MIN_EXP=

Emax f
imach.DOUBLE_MAX_EXP=
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INFO, i, f, d, /Structure

** Structure IMACHINE, 13 tags, length=52:

 BITS_PER_CHAR LONG              8

 INTEGER_BASE LONG              2

 INTEGER_DIGITS LONG             15

 MAX_INTEGER LONG          32767

 LONG_DIGITS LONG             31

 MAX_LONG LONG     2147483647

 FLOAT_BASE LONG              2

 FLOAT_DIGITS LONG             24

 FLOAT_MIN_EXP LONG           -125

 FLOAT_MAX_EXP LONG            128

 DOUBLE_DIGITS LONG             53

 DOUBLE_MIN_EXP LONG          -1021

 DOUBLE_MAX_EXP LONG           1024

** Structure FMACHINE, 8 tags, length=32:

 MIN_POS FLOAT    1.17549e-38

 MAX_POS FLOAT    3.40282e+38

 MIN_REL_SPACE FLOAT    5.96046e-08

 MAX_REL_SPACE FLOAT    1.19209e-07

 LOG_10 FLOAT       0.301030

 NAN FLOAT            NaN

 POS_INF FLOAT            Inf

 NEG_INF FLOAT           -Inf

** Structure DMACHINE, 8 tags, length=64:

 MIN_POS DOUBLE 2.2250739e-308

 MAX_POS DOUBLE 1.7976931e+308

 MIN_REL_SPACE DOUBLE  1.1102230e-16

 MAX_REL_SPACE DOUBLE  2.2204460e-16

 LOG_10 DOUBLE     0.30102998

 NAN DOUBLE            NaN

 POS_INF DOUBLE       Infinity

 NEG_INF DOUBLE      -Infinity
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STATDATA Function 
Retrieves commonly analyzed data sets.

Usage

result = STATDATA(choice)

Input Parameters

choice — Data set indicator.

Returned Value

result — An array containing the desired data set is returned.

Input Keyword

Double — If present and nonzero, double precision is used.

CHOICE Numberof Rows Number of Columns Description of Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisher iris

4 144 1 Box and Jenkins 
Series G

5 13 5 Draper and Smith 
Appendix B

6 197 1 Box and Jenkins 
Series A

7 296 2 Box and Jenkins 
Series J

8 100 4 Robinson Multichannel 
Time Series

9 113 34 Afifi and Azen 
Data Set A
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Discussion 

Function STATDATA retrieves a standard data set frequently cited in statistics 
text books or in this manual. The following table gives the references for each 
data set:

Example 

In this example, STATDATA is used to copy the Draper and Smith (1981, 
Appendix B) data set into X.

x = STATDATA(5)

PM, x

      7.00000      26.0000      6.00000      60.0000      
78.5000

      1.00000      29.0000      15.0000      52.0000      
74.3000

      11.0000      56.0000      8.00000      20.0000      
104.300

      11.0000      31.0000      8.00000      47.0000      
87.6000

      7.00000      52.0000      6.00000      33.0000      
95.9000

      11.0000      55.0000      9.00000      22.0000      
109.200

      3.00000      71.0000      17.0000      6.00000      
102.700

CHOICE References

1 Longley (1967)

2 Anderson (1971, p. 660)

3 Fisher (1936); Mardia et al. (1979, Table 
1.2.2)

4 Box and Jenkins (1976, p. 531)

5 Draper and Smith (1981, pp. 629–630)

6 Box and Jenkins (1976, p. 525)

7 Box and Jenkins (1976, pp. 532–533)

8 Robinson (1967, p. 204)

9 Afifi and Azen (1979, pp. 16–22)
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      1.00000      31.0000      22.0000      44.0000      
72.5000

      2.00000      54.0000      18.0000      22.0000      
93.1000

      21.0000      47.0000      4.00000      26.0000      
115.900

      1.00000      40.0000      23.0000      34.0000      
83.8000

      11.0000      66.0000      9.00000      12.0000      
113.300

      10.0000      68.0000      8.00000      12.0000      
109.400

BINOMIALCOEF Function 
Evaluates the binomial coefficient.

Usage

result = BINOMIALCOEF(n, m)

Input Parameters

n — First parameter of the binomial coefficient. Parameter n must be nonnega-
tive.

m — Second parameter of the binomial coefficient. Parameter m must be non-
negative.

Returned Value

result — The binomial coefficient 

is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

n

m

�
�
�
��
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Discussion

The binomial function is defined to be 

with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example,

is computed and printed.

n  =  9

m  =  5

ans  =  BINOMIALCOEF(n, m)

PRINT,  "binomial coefficient =", ans

binomial coefficient =      126.000

BETA Function 
Evaluates the complete beta function.

Usage

result = BETA(x, y)

Input Parameters

x — First beta parameter.  x must be positive.

y — Second beta parameter.  y must be positive.

n

m
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m n m
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Returned Value

result — The value of the beta function β(x, y). If no result can be computed, 
then NaN is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The beta function, β(x, y), is defined to be

The beta function requires that x > 0 and y > 0. It underflows for large argu-
ments.

Example

Evaluate the beta function β(0.5, 0.2).

x  =  0.5

y  =  0.2

ans  =  BETA(x, y)

PRINT, "beta(", x, ",", y, ") =", ans

beta(     0.500000,     0.200000) =      6.26865

Alert Errors

STAT_BETA_UNDERFLOW — The arguments must not be so large that the re-
sult underflows.

Fatal Errors

STAT_ZERO_ARG_OVERFLOW — One of the arguments is so close to zero 
that the result overflows.

β x y
x y

x y
t t dtx y,� � � � � �
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BETAI Function 
Evaluates the real incomplete beta function Ix = βx (y, z)/β(y, z).

Usage

result = BETAI(x, y, z)

Input Parameters

x — Point at which the incomplete beta function is to be evaluated.

y — Point at which the incomplete beta function is to be evaluated.

z — Point at which the incomplete beta function is to be evaluated.

Returned Value

result — The value of the incomplete beta function.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The incomplete beta function is defined to be

The incomplete beta function requires that 0 ≤ x ≤ 1, y > 0, and z > 0. It under-
flows for sufficiently small x and large y. This underflow is not reported as an 
error. Instead, the value zero is returned.

Example

Evaluate the log of the incomplete beta function I0.61 =β0.61 (2.2,3.7)/β(2.2,3.7).

x  =  0.61

y  =  2.2

I y z
y z

y z y b z
t t dtx

x yx z,
,

, ,
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β β
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z  =  3.7

ans  =  BETAI(x, y, z)

PRINT, "beta incomplete =", ans

beta incomplete =     0.882172

LNBETA Function 
Evaluates the logarithm of the real beta function ln β(x, y).

Usage

result = LNBETA(x, y)

Input Parameter

x — Point at which the logarithm of the beta function is to be evaluated.  
x must be positive.

y — Point at which the logarithm of the beta function is to be evaluated.  
y must be positive.

Returned Value

result — The value of the logarithm of the beta function β(x, y).

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion 

The beta function, β(x, y), is defined to be

and LNBETA returns ln β(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow 
for very large arguments.
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Example

Evaluate the log of the beta function ln β(0.5, 0.2).

x  =  0.5

y  =  0.2

ans  =  LNBETA(x, y)

PRINT, "log beta(", x, ",", y, ") =", ans

log beta(     0.500000,     0.200000) =      1.83556

Warning Errors

STAT_X_IS_TOO_CLOSE_TO_NEG_1 — The result is accurate to less than 
one precision because the expression −x/(x + y) is too close to −1.

GAMMA_ADV Function 
Evaluates the real gamma function.

Usage

result = GAMMA_ADV(x)

Input Parameters

x — Point at which the gamma function is to be evaluated.

Returned Value

result — The value of the gamma function Γ(x).

Input Keywords

Double — If present and nonzero, double precision is used.
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Discussion

The gamma function, Γ(x), is defined to be

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It un-
derflows for x << 0 and overflows for large x. It also overflows for values near 
negative integers.

Example

In this example, Γ(1.5) is computed and printed.

x  =  1.5

ans  =  GAMMA_ADV(x)

PRINT, "Gamma(", x, ") =", ans

Gamma(      1.50000) =     0.886227

Alert Errors

STAT_SMALL_ARG_UNDERFLOW — The parameter x must be large enough 
that Γ(x) does not underflow. The underflow limit occurs first for parameters  
close to large negative half integers. Even though other paramters away from 
these half integers may yield machine-representable values of Γ(x), such 
paramters are considered illegal. 

Warning Errors

STAT_NEARR_NEG_INT_WARN — The result is accurate to less than one-half 
precision because x is too close to a negative integer.

Fatal Errors

STAT_ZERO_ARG_OVERFLOW — The parameter for the gamma function is 
too close to zero.

STAT_NEAR_NEG_INT_FATAL — The parameter for the function is too 
close to a negative integer.

STAT_LARGE_ARG_OVERFLOW — The function overflows because x is too 

Γ x t e dtx t� � = � − −∞ 1
0
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large.

STAT_CANNOT_FIND_XMIN — The algorithm used to find xmin failed. This 
error should never occur.

STAT_CANNOT_FIND_XMAX — The algorithm used to find xmax failed. This 
error should never occur.

GAMMAI Function 
Evaluates the incomplete gamma function γ(x, y).

Usage

result = GAMMAI(x, y)

Input Parameters

x — Parameter of the incomplete gamma function is to be evaluated.  x must be 
positive.

y — Point at which the incomplete gamma function is to be evaluated.  y must 
be nonnegative.

Returned Value 

result — The value of the incomplete gamma function γ(x, y).

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The incomplete gamma function, γ(x, y), is defined to be

for y > 0. The incomplete gamma function is defined only for x > 0. Although 
γ(x, y) is well defined for y > −∞, this algorithm does not calculate γ(x, y) for 
negative y. For large x and sufficiently large y, γ(x, y) may overflow. γ(x, y) is 

γ x y t e dtyx t,� � = � − −1
0
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bounded by Γ(x), and users may find this bound a useful guide in determining 
legal values for x.

Example 

Evaluates the incomplete gamma function at x = 1 and y = 3.

x  =  1.0

y  =  3.0

ans  =  GAMMAI(x, y)

PRINT, "incomplete gamma(", x, ",", y, ") =", ans

incomplete gamma(      1.00000,      3.00000) =     0.950213

Fatal Errors

STAT_NO_CONV_200_TS_TERMS — The function did not converge in 200 
terms of Taylor series.

STAT_NO_CONV_200_CF_TERMS — The function did not converge in 200 
terms of the continued fraction.

LNGAMMA Function 
Evaluates the logarithm of the absolute value of the gamma function log |Γ(x)|.

Usage

result  = LNGAMMA(x)

Input Parameters

x — Point at which the logarithm of the absolute value of the gamma function 
is to be evaluated.

Returned Value 

result — The value of the logarithm of gamma function log |Γ(x)|.

Input Keywords

Double — If present and nonzero, double precision is used.
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Discussion

The logarithm of the absolute value of the gamma function log |Γ(x)| is comput-
ed.

Example

In this example, log |Γ(3.5)| is computed and printed.

x  =  3.5

ans  =  LNGAMMA(x)

PRINT, "log gamma(", x, ") =", ans

log gamma(      3.50000) =      1.20097

Warning Errors

STAT_NEAR_NEG_INT_WARN — The result is accurate to less than one-half 
precision because x is too close to a negative integer.

Fatal Errors

STAT_NEGATIVE_INTEGER — The parameter for the function cannot be a 
negative integer.

STAT_NEAR_NEG_INT_FATAL — The  parameter for the function is too 
close to a negative integer.

STAT_LARGE_ABS_ARG_OVERFLOW — |x| must not be so large that the re-
sult overflows.

CMAST_ERR_TRANS Function 
Determines if an Informational Error has occurred.

Usage

result = CMAST_ERR_TRANS(arg)

Output Parameters

arg — Can be either a scalar string specifying a particular Informational Error 
or an integer specifying the internal code of an Informational Error.
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Returned Value

result — If arg is a scalar string specifying a valid Informational Error, then 
the return value is the integer error-code value of the Informational Error. If arg 
is an integer specifying a valid Informational Error code, then a string specify-
ing the Informational Error is returned.

Discussion

Function CMAST_ERROR_TRANS is designed to check programs for specific 
Informational Errors. PV-WAVE:IMSL Statistics statistical functions attempt to 
detect user errors and handle them in a way that provides as much information 
to the user as possible. To do this, five levels of Informational Error severity, in 
addition to the basic PV-WAVE:IMSL Statistics error-handling facility, are rec-
ognized. Following a call to a mathematical or statistical function, the system 
variables !Error and !Cmast_Err contain information concerning the current 
error state. Variable !Error contains the error number of the last error, and 
!Cmast_Err is set either to zero, which indicates that an Informational Error did 
not occur, or to the error code of the last Informational Error that did occur.

The user can interact with the PV-WAVE:IMSL Statistics error-handling sys-
tem with respect to Informational Errors in two ways: (1) change the default 
printing actions and (2) determine the code of an Informational Error so as to 
take corrective action. To change the default printing action, the system vari-
able !Quiet is set to a nonzero value. To allow for corrective action to be taken 
based on the existence of a particular Informational Error, function 
CMAST_ERR_TRANS retrieves the integer code for an Informational Error 
given a scalar string specifying the name given to the error.

In the program segment below, the Cholesky factorization of a matrix is to be 
performed. If it is determined that the matrix is not nonnegative definite (and 
often this is not immediately obvious), the program is to take a different branch.

x = CHNNDFAC, a, fac

; Call CHNNDFAC with a matrix that may not be nonnegative definite.

IF (CMAST_ERROR_TRANS($
’MATH_NOT_NONNNEG_DEFINITE’) EQ $
!Cmast_Err))$

; Check the system variable Cmast_Err to see if it contains the

; error code for the error MATH_NOT_NONNNEG_DEFINITE. 

THEN ;... Handle matrix that is not nonnegative definite.
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CMAST_ERR_STOP Function 
Sets options for error recovery in Math and Stat options.

Usage

CMAST_ERR_STOP, lev

Input Parameters

lev — Integer specifying the stopping level.

Discussion

Function CMAST_ERR_STOP allows users to define how the Math and Stat 
options will behave when a Terminal or Fatal error occurs. Setting lev to one 
will force the Math/Stat routine to stop execution when a Terminal or Fatal er-
ror occurs (default). Setting lev to zero will force the Math/Stat routine to con-
tinue execution when a Terminal or Fatal error occurs. 

CMAST_ERR_PRINT Function 
Sets options for error printing in Math and Stat options.

Usage

CMAST_ERR_PRINT, lev

Input Parameters

lev —  Integer specifying the printing level.

Discussion

Function CMAST_ERR_PRINT allows users to define how the Math and Stat 
options will behave when an error occurs. Setting lev to two will force the 
Math/Stat routine to print all error messages that occur (default). Setting lev to 
one will force the Math/Stat routine to print only Terminal and Fatal error mes-
sages that occur. Setting lev to zero will force the Math/Stat routine to not print 
any error messages.
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Example

In this example, the function CSTRENDS is called with a data set that will gen-
erate a warning error.  After the first call to CSTRENDS, a call is made to 
CMAST_ERR_PRINT to shut off printing of all but Terminal and Fatal errors.

x = [9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, $

     8.25, 8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, $

     7.75,7.75, 7.75, 8.0, 7.5, 7.5, 7.125, 7.25, 7.25, 7.125, 
$

     6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625, 7.125, 7.75]

pstat = CSTRENDS(x)

% CSTRENDS: Warning: STAT_AT_LEAST_ONE_TIE

At least one tie is detected between the samples.

PM, pstat

     0.999996

  7.24792e-05

      1.00000

  3.81470e-06

      1.00000

  0.000244141

      1.00000

  0.000244141

; Call CMAST_ERR_PRINT to shut off printing of NOTE, ALERT and 

; WARNING errors.

CMAST_ERR_PRINT, 1

Call CSTRENDS again.  Note that the error message ids not print-
ed.
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APPENDIX

B

Summary of Routines
ALLBEST Procedure page 100

Selects the best multiple linear regression models.

ANOVA1 Function page 212
Analyzes a one-way classification model.

ANOVABALANCED Function page 242
Balanced fixed, random, or mixed model

ANOVAFACT Function page 221
Analyzes a balanced factorial design with fixed effects.

ANOVANESTED Function page 231
Nested random mode 

ARMA Function page 366
Computes method-of-moments or least-squares 
estimates of parameters for a nonseasonal ARMA model.

AUTOCORRELATION Function page 391
Sample autocorrelation function

BETA Function page 581
Evaluate the complete beta function.

BETACDF Function page 495
Evaluates the beta probability distribution function.

BETAI Function page 583
Evaluate the real incomplete beta function.
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BINOMIALCDF Function page 497
Evaluates the binomial distribution function.

BINOMIALCOEF Function page 580
Evaluate the binomial coefficient.

BINOMIALPDF Function page 498
Evaluates the binomial probability function.

BINORMALCDF Function page 480
Evaluates the bivariate normal distribution function.

BOXCOXTRANS Function page 387
Perform a Box-Cox transformation

CAT_GLM Function page 280
Generalized linear models.

CHISQCDF Function page 482
Evaluates the chi-squared distribution function. 
Using a keyword, the inverse of the chi-squared
distribution can be evaluated.

CHISQTEST Function page 334
Performs a chi-squared goodness-of-fit test.

CMAST_ERR_PRINT Procedure page 591
Sets options for error printing.

CMAST_ERR_STOP Procedure page 591
Sets options for error recovery. 

CMAST_ERR_TRANS Function page 589
Determines if an Informational Error has occurred.

COCHRANQ Function page 324
Cochran’s Q test.

CONT_TABLE Procedure page 549
Sets up a table to generate pseudorandom numbers from a general continuous 
distribution.

CONTINGENCY Function page 261
Performs a chi-squared analysis of a two-way 
contingency table.

COVARIANCES Function page 190
Computes the sample variance-covariance or 
correlation matrix.
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CSTRENDS Function page 310
Cox and Stuarts’ sign test for trends in location 
and dispersion.

DIFFERENCE Function page 382
Differences a seasonal or nonseasonal time series.

DISCR_ANALYSIS Procedure page 437
Perform discriminant function analysis.

DISCR_TABLE Function page 553
Sets up a table to generate pseudorandom numbers from a general discrete 
distribution.

EXACT_ENUM Function page 273
Exact probabilities in a table; total enumeration.

EXACT_NETWORK Function page 275
Exact probabilities in a table.

FACTOR_ANALYSIS Function page 428
Extracts initial factor-loading estimates in factor analysis.

FAURE_INIT Function page 564
Initializes the structure used for computing a shuffled Faure sequence.

FAURE_NEXT_PT Function page 567
Generates a shuffled Faure sequence.

FCDF Function page 487
Evaluates the F distribution function. Using a keyword, 
the inverse of the F distribution function can be evaluated.

FREQTABLE Function page 36
Tallies observations into a one-way frequency table.

FRIEDMANS_TEST Function page 319
Friedman’s test.

GAMMA_ADV Function page 585
Evaluate the real gamma function.

GAMMACDF Function page 492
Evaluates the gamma distribution function.

GAMMAI Function page 587
Evaluate the incomplete gamma function.

GARCH Function page 401
Compute estimates of the parameters of a GARCH(p,q) 
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model

HYPERGEOCDF Function page 500
Evaluates the hypergeometric distribution function.

HYPOTH_PARTIAL  Function page 141
Constructs an equivalent completely testable multivariate 
general linear hypothesis HβU = G  from a partially testable
hypothesis HpβU = Gp.

HYPOTH_SCPH Function page 147
Computes the matrix of sums of squares and crossproducts 
for the multivariate general linear hypothesis HβU = G 
given the regression fit. 

HYPOTH_TEST Function  page 151
Performs tests for a multivariate general linear 
hypothesis HβU = G given the hypothesis sums of 
squares and crossproducts matrix SH. 

K_MEANS Function page 419
Performs a K-means (centroid) cluster analysis.

KALMAN Procedure page 406
Performs Kalman filtering and evaluates the likelihood function for the state-space 
model.

KOLMOGOROV1 Function page 342
One-sample continuos data Kolmogorov-Smirnov.

KOLMOGOROV2 Function page 345
Two-sample continuos data Kolmogorov-Smirnov.

KTRENDS Function page 326
K-sample trends test.

KW_TEST Function page 317
Kruskal-Wallis test.

LACK_OF_FIT Function page 398
Lack-of-fit test based on the corrleation function

LNBETA Function page 584
Evaluate the log of the real beta function.

LNGAMMA Function page 588
Evaluate the logarithm of the absolute value of 
the gamma function.

LNORMREGRESS Function page 169
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Fits a multiple linear regression model using criteria 
other than least squares.  Namely, LNORMREGRESS 
allows the user to choose Least Absolute Value (L1), 
Least Lp norm (Lp), or Least Maximum Value  
(Minimax or L∞) method of multiple linear regression.

MACHINE Function page 573
Returns information describing the computer’s arithmetic.

MULTICOMP Function page 230
Performs Student-Newman-Keuls multiple-comparisons test.

MULTIPREDICT Function page 93
Computes predicted values, confidence intervals, and 
diagnostics after fitting a regression model.

MULTIREGRESS Function page 77
Fits a multiple linear regression model using least squares 
and optionally compute summary statistics for the
 regression model.

MVAR_NORMALITY Function page 347
Mardia’s test for multivariate normality.

NCTRENDS Function page 308
Noehter’s test for cyclical trend.

NONLINOPT Function page 160
Fits data to a nonlinear model (possibly with linear 
constraints) using the successive quadratic programming
 algorithm (applied to the sum of squared errors, 
sse = ∑(yi − f(xi; θ))2) and either a finite difference 
gradient or a user-supplied gradient.

NONLINREGRESS Function page 132
Fits a nonlinear regression model.

NORM1SAMP Function page 25
Computes statistics for mean and variance inferences 
using a sample from a normal population.

NORM2SAMP Function page 29
Computes statistics for mean and variance inferences 
using samples from two independently normal populations.

NORMALCDF Function page 478
Evaluates the standard normal (Gaussian) distribution
 function. Using a keyword, the inverse of the standard 
normal (Gaussian) distribution can be evaluated.
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NORMALITY Function page 339
Performs a test for normality.

PARTIAL_AC Function page 395
Sample partial autocorrelation function

PARTIAL_COV Function page 194
Partial correlations and covariances.

POISSONCDF Function page 502
Evaluates the Poisson distribution function.

POLYPREDICT Function page 125
Computes predicted values, confidence intervals, and 
diagnostics after fitting a polynomial regression model.

POLYREGRESS Function page 118
Performs a polynomial least-squares regression.

POOLED_COV Function page 199
Pooled covariance matrix.

PRINC_COMP Function page 423
Computes principal components.

RAND_GEN_CONT Function page 551
Generates pseudorandom numbers from a general continuous distribution.

RAND_GEN_DISCR Function page 557
Generates pseudorandom numbers from a general discrete distribution using an 
alias method or optionally a table lookup method.

RANDOM Function page 518
Generates pseudorandom numbers. The default distribution
is a uniform (0, 1) distribution, but many different
distributions can be specified through the use of
keywords.

RANDOM_ARMA Function page 560
Generate pseudorandom ARMA process numbers

RANDOM_FROM_DATA Function page 547
Generates pseudorandom numbers from a multivariate distribution determined from 
a given sample.

RANDOM_NPP Function page 537
Generates pseudorandom numbers from a nonhomogeneous Poisson process. 

RANDOM_ORDER Function page 540
Generates pseudorandom order statistics from a standard normal distribution.  



 B-7

RANDOM_ORTH_MAT Function page 543
Generates a pseudorandom orthogonal matrix or a correlation matrix

RANDOM_SAMPLE Function page 545
Generates a simple pseudorandom sample from a finite population

RANDOM_TABLE Function page 553
Sets or retrieves the current table used in either the shuffled or GFSR random num-
ber generator

RANDOM_TABLE_TWOWAY Function page 542
Generates a pseudorandom two-way table. 

RANDOMNESS_TEST Function page 352
Runs test, Paris-serial test, d2 test or triplets tests.

RANDOMOPT page 510
Uses keywords to set or retrieve the random 
number seed or to select the uniform (0, 1) 
multiplicative, congruential pseudorandom-number generator.

RANKS Function page 48
Computes the ranks, normal scores, or exponential
 scores for a vector of observations.

REGRESSORS Function page 70
Generates regressors for a general linear model.

ROBUST_COV Function page 202
Robust estimate of covariance matrix.

SIGNTEST Function page 296
Performs a sign test.

SIMPLESTAT Function page 19
Computes basic univariate statistics.

SORTDATA Function page 42
Sorts observations by specified keys, with option to 
tally cases into a multiway frequency table.

STATDATA Function page 578
Retrieves commonly analyzed data sets.

STEPWISE Procedure page 109
Builds multiple linear regression models using forward, 
backward, or stepwise selection.

SURVIVAL_GLM Function page 450
Analyzes survival data using a generalized linear model 
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and estimates using various parametric modes. 

TCDF Function page 489
Evaluates the Student’s t distribution function.

TIE_STATS Function page 315
Tie statistics.

WILCOXON Function page 300
Performs a Wilcoxon rank sum test.
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Index 

A
alpha-factor analysis method   434
analysis of variance   211

factorial design   221
general linear model   70
n-way design   221
one-way design   214

ANOVA, see analysis of variance
ANSI/IEEE 754-1985   575
ARMA

least-squares procedure   366, 367
method-of-moments procedure   367
stationary   384

association, measures of   267
asymptotic variances   425
autoregressive parameters   370

B
backcasting   367
backward difference operator   383
backward glance   114
backward selection   109
balanced experimental design   242
basic uniform generator   507
beta distribution   524, 535
beta functions   581, 583, 584
binomial coefficient   580
binomial distribution   525
binomial distributions   505, 506, 542, 543, 

545, 547, 553, 557
binomial probability   296
Blom normal scores   50
Bonferroni method   216

C
cauchy distribution   526
characteristic roots   424
characteristic vectors   424
chi-square distribution   526
chi-squared

analysis   261
goodness-of-fit test   334, 336
measures relating to   264
statistic   264
test   26, 31, 261

chi-squared statistics   259
chi-squared test   334
classification model, one-way   212
classification variables   70
cluster analysis   417, 419
Cochran Q test   324
coefficient of variation   22
compiler   572, 591
confidence intervals   93, 125

Bonferroni method   213, 214, 216
Dunn-Sidák method   213, 214, 216
means   94
One-at-a-Time t (Fisher’s LSD) method   

213, 214, 217
prediction   94
Scheffé method   94, 213, 214, 216
Tukey method   213, 214, 215
Tukey-Kramer method   213, 214, 215

constants
computer   573

contingency coefficient   262, 264, 353
contingency tables   273

two-way   261
continuous variables   70
Cook’s D statistics   94, 126
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Cornish-Fisher expansion   490
correlation coefficient

multiple   80
correlation matrix   190, 543, 547
correlations   190, 194
counts   19, 42
covariances   190

sample   425
Cox and Stuart sign test   310
Cramer’s V   264
curvilinear regression   120

D
data sets, statistical   571

retrieving   578
degrees of freedom

for error   79, 112, 119
for the model   79, 112, 119
total corrected   79, 112, 119

DFFITS statistics   66, 94, 126
diagnostics   93, 125
discrete uniform distribution   530
distribution functions

beta probability   495
binomial distribution   497
binomial probability   498
chi-squared, noncentral   482
F distribution   487
gamma distribution   492
hypergeometric   500
normal

bivariate   480
Gaussian   478

inverse   478
inverse   478

Poisson   502
Student’s t   489

dummy variables   71
Dunn-Sidák method   216

E
eigensystem analysis   418
Erlang distribution   493
error handling

informational error codes   589
errors

alert   xv
fatal   xv
note   xv
terminal   xv
warning   xv

excess, coefficient of   19, 22
exponential distribution   523
exponential mix distribution   527
exponential order statistics   51
exponential scores   48

F
F test statistic   31, 33
factor analysis   417, 418, 428
factorial design, balanced   221
factor-loading estimates   428
fatal errors   xv
Faure   565, 568
Faure sequence   564, 567

faure_next_point   567
finite differences, forward   136
Fisher’s LSD   217
forecasts

GARCH   401
forward finite differences   136
forward selection   109
frequency tables

multiway   42
one-way   36

frequency tabulation   44
Friedmanís test   319
F-statistic   79

G
gamma distribution   524
gamma functions   585, 587, 588
gamma statistic   262
GARCH

(Generalized Autoregressive 
Conditional Heteroskedastic )   
401

general discrete distribution   498, 506, 
540, 542, 545, 549, 551, 553, 557, 
558

general distributions   334
general linear models   58, 70
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generalized feedback shift register method   
507

generalized linear models   260
generators

basic uniform   507
random-number   17
shuffled   508

geometric distribution   527
GFSR   510
GFSR generator   508
GFSR method   507
Givens transformations   81
Goodman and Kruskal τ   268

for columns   262
for rows   262

goodness-of-fit tests   334
Gray code   566, 570
G-squared test   261

H
hypergeometric distribution   528

I
IEEE arithmetic   576
image analysis method   430, 433
indicator variables   71
inferences about the mean   32
Informational Error   xiv
inverse

g3   85
generalized   84
Moore-Penrose   84

J
Jacobian matrix   133

K
Kalman filtering   406
Kappa analysis   259
kappa statistic   263, 269
Kendall’s τb   262
key sort   44
K-means analysis   419
Kolmogorov one-sample test   342

Kolmogorov two-sample test   345
Kruskal-Wallis test   263, 268
k-sample trends test   326
kurtosis   19, 22

L
lack-of-fit statistics   119
lack-of-fit tests   65
Least Absolute Value   69
Least Maximum Value   69
Least Squares

Alternatives
Least Absolute Value   69
Least Maximum Value   69
Lp Norm   69

least-squares fit   77, 242, 308, 310, 
315, 319, 342, 345
weighted   87

least-squares method   432
generalized   430
unweighted   430
weighted   62

Lebesque measure   565, 568
Levenberg-Marquardt algorithm, modified   

136
leverages   66, 94
library version   572, 591
Lilliefors test   339, 340
linear dependence   61
linear regression

multiple   56
simple   56

linear trend test   269
linearly dependent regressors   83
logarithmic distribution   528
lognormal distribution

random numbers
lognormal distribution   529

low-discrepancy   566, 569
Lp Norm   69

M
machine constants   571
MAD, see median absolute deviation   23
Mallows Cp criterion   101
Mann-Whitney U test   302
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maximum   19, 22
maximum likelihood estimates   412
maximum likelihood method   430, 432
McNemar test   263, 269
mean   19, 22, 25, 79, 112, 119

exact   262, 353
for two normal populations   29
inferences about   32
lower confidence limit   19
normal population   25
return value   26
upper confidence limit   19

mean square
error   79, 112, 119
model   79, 112, 119

measures of
association   265
prediction   267
uncertainty   267

measures of association   259
median   23
median absolute deviation   23
method of provisional means   192
minimum   19, 22
missing values   xiv, 69
models

general linear   70
multiple linear regression   77, 100
nonlinear regression   62, 132
polynomial   58
polynomial regression   125
regression   93

Moore-Penrose inverses   84
multiple linear regression models   56, 70, 77, 

100, 109, 242, 308, 310, 315, 319, 342, 
345

multiple-comparisons test
Student-Newman-Keuls   230

multiplicative congruential generator   507
multiplicative generator   507
multivariate analysis

cluster analysis   419
factor analysis   428
principal components   423

multivariate distribution   506, 547
multivariate normal distribution   521, 525, 536
multiway frequency table   42

N
NaN (Not a Number)   xiv, 69
negative binomial   529
nested random model   211
Noether test   308
noncentral chi-squared distribution func-

tion   482
nonlinear regression models   62, 132
nonuniform generators   509
normal distribution   523
normal populations

mean   25
variances   25

normal scores   48
normality test   339
numerical ranking   48

O
observations, number of   19
One-at-a-Time t method   217
one-way classification model   212
one-way frequency table   36
operating system   572, 591
optimal prediction   263
overflow   xiv

P
partial correlations   194
partial covariances   194
phi   262, 264, 353
Poisson distribution   523, 535
polynomial models   58
polynomial regression models   125
pooled variances   30
predicted values   93, 125, 135
prediction coefficient   267
principal components   417, 423
principal components method   430, 431
principal factor method   430, 431
probability distribution functons, see distri-

bution functions   477
product moment correlation   262
provisional means, method of   192
pseudorandom number generators   334
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pseudorandom numbers   505, 506, 537, 547, 
549, 551, 553, 557, 558

pseudorandom order statistics   505, 540
pseudorandom orthogonal matrix   505, 543
pseudorandom sample   506, 545
p-values   79, 112, 119, 265

R
R matrix   61, 84, 135
R2 criterion   79, 100, 112, 119

adjusted   79, 100, 112, 119
random numbers   506

beta distribution   524, 535
binomial distribution   525
cauchy distribution   526
chi-squared distribution   526
control the seed   510
discrete uniform distribution   530
exponential distribution   523
exponential mix distribution   527
gamma distribution   524
generate pseudorandom numbers   518
geometric distribution   527
hypergeometric distribution   528
logarithmic distribution   528
multivariate normal distribution   521, 525, 

536
negative binomial   529
normal distribution   523
Poisson distribution   523, 535
select the form   510
Student’s t distribution   530
triangular distribution   530
von Mises distribution   530
Weibull distribution   531

randomness test   352
range   19, 22
ranks   48
regression

all best   100
curvilinear   118
general linear model   70
multiple linear   77
nonlinear   132
polynomial least-squares   118
simple linear   56
stepwise   109

regression coefficients   79, 102, 113, 
132

regression models   56, 93
regression simple linear   77
regressors   70
residuals   94, 126, 135

deleted   66, 94, 126
jackknife   66
standardized   66, 94, 126

S
sample covariance   425
Satterthwaite’s procedure   33
Savage scores   49
scaling results of RANDOM   535
Scheffé confidence intervals   94
Scheffé method   216
serial number   572, 591
Shapiro-Wilk W test   339, 340
shuffled generators   508
shuffling   510
sign test   296
skewness, coefficient of   19, 22
Snedecor’s F random variable   487
Somers’ D

for columns   262
for rows   262

sorting   42, 44
key   44

Spearman rank correlation   262
standard deviation   19, 26, 27, 31, 79, 

112, 119
exact   262, 353

standard errors   265
standard errors, for characteristic roots   

424
state vector   406
statespace model   406
stationary ARMA   384
stepwise selection   109
Stuart’s τc   262
Student’s t distribution   530
Student’s t distribution function   489
Student-Newman-Keuls multiple-compar-

isons test   230
sum of squares

for error   79, 112, 119
for the model   79, 112, 119
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sequential   84, 119
total corrected   79, 112, 119

summary statistics   63, 77
sum-of-squares and crossproducts matrix   190
sums-of-squares

within-cluster   420
system variables

!Cmath_Err   xiv
!Error   xiv
!Quiet   xiv

T
t test statistic   26, 30, 32
terminal errors   xv
test for linear trend   269
test for normality   339
tests for randomness   334
tie statistics   315
time series

autoregressive parameters   366
backward differences   383
Box-Jenkins forecasts   374
difference   382
moving average parameters   366

transformations   68
triangular distribution   530
trust region   136
Tucker reliability coefficient   430
Tukey method   215
Tukey normal scores   51
Tukey-Kramer method   215

U
uncertainty

coefficients   262, 268
measures of   267

unit circle   520
univariate statistics   19, 280, 450

V
Van der Waerden normal scores   51
variable selection   57, 100, 109
variables

classification   70
continuous   70

dummy   71
indicator   71

variance-covariance matrix   190, 521
variances   19, 22, 25, 190

asymptotic   425
for two normal populations   29
inferences about   33
inflation factor   80
lower confidence limit   20
normal population   25
upper confidence limit   20

variation, coefficient of   19, 22, 79, 112, 
119

von Mises distribution   530

W
warning errors   xv
Weibull distribution   531
weighted least-squares fit   62, 84, 87
Wilcoxon rank sum test   300
Wilson-Hilferty approximation   483
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